Journal of Radioanalytical and Nuclear Chemistry

, Volume 321, Issue 3, pp 997–1004 | Cite as

Development and comparison of two high accuracy methods for uranium concentration in nuclear fuel: ID-TIMS and K-edge densitometry

  • Alexandre QuemetEmail author
  • Alexandre Ruas
  • Eric Esbelin
  • Vincent Dalier
  • Cédric Rivier


This study compares the two analytical methods for uranium concentration determination with high accuracy in uranium pellet: K-edge densitometer (KED) and the isotope dilution with thermal ionisation mass spectrometry measurements (ID-TIMS). Both techniques are compared in terms of time, generated radioactive effluent, simplicity, uncertainty estimation and detection limit. ID-TIMS shows lower detection limit and uncertainties than KED. However, the KED analysis time is shorter and generates less effluent. Both techniques were used for metrological analysis of uranium concentration in nuclear materials. The optimization of sample spike mixture isotope ratio for ID-TIMS to decrease uncertainties is also discussed.


Uranium concentration TIMS K-edge densitometer Isotope dilution 



We are grateful to Dr. S. Baghdadi (IRSN/PSN-EXP/SSRD/BTE) for her precious advice on the present paper. We would like to thank all of the IAEA staff (Seibersdorf-Austria) who organized the interlaboratory comparison and all the KED staff for the KED measurements.


  1. 1.
    Godoy MLDP, Godoy JM, Roldão LA, Tauhata L (2009) Determination of total content and isotopic compositions of plutonium and uranium in environmental samples for safeguards purposes by ICP-QMS. J Environ Radioact 100:613–625. CrossRefGoogle Scholar
  2. 2.
    Metzger SC, Ticknor BW, Rogers KT, Bostick DA, McBay EH, Hexel CR (2018) Automated separation of uranium and plutonium from environmental swipe samples for multiple collector inductively coupled plasma mass spectrometry. Anal Chem 90:9441–9448. CrossRefGoogle Scholar
  3. 3.
    Boulyga S, Konegger-Kappel S, Richter S, Sangély L (2015) Mass spectrometric analysis for nuclear safeguards. J Anal At Spectrom 30:1469–1489. CrossRefGoogle Scholar
  4. 4.
    Esbelin E, Rivier C, Duhamel G (2018) High concentration measurements of U and Pu with nondestructive and standardless K-edge densitometer device. X Ray Spectrom 47:22–33. CrossRefGoogle Scholar
  5. 5.
    Ottmar H, Eberle H (1991) The hybrid K-edge/K-XRF densitometer: principles-design-performance. KFK Report 4590, KarlsruheGoogle Scholar
  6. 6.
    Quemet A, Maillard C, Ruas A (2015) Determination of zirconium isotope composition and concentration for nuclear sample analysis using thermal ionization mass spectrometry. Int J Mass Spectrom 392:34–40. CrossRefGoogle Scholar
  7. 7.
    Aggarwal SK (2016) Thermal ionisation mass spectrometry (TIMS) in nuclear science and technology—a review. Anal Methods 8:942–957. CrossRefGoogle Scholar
  8. 8.
    Quemet A, Maloubier M, Dalier V, Ruas A (2014) Development of an analysis method of minor uranium isotope ratio measurements using electron multipliers in thermal ionization mass spectrometry. Int J Mass Spectrom 374:26–32. CrossRefGoogle Scholar
  9. 9.
    Quemet A, Maloubier M, Ruas A (2016) Contribution of the Faraday cup coupled to 1012 ohms current amplifier to uranium 235/238 and 234/238 isotope ratio measurements by thermal ionization mass spectrometry. Int J Mass Spectrom 404:35–39. CrossRefGoogle Scholar
  10. 10.
    Quemet A, Ruas A, Dalier V, Rivier C (2019) Development and comparison of high accuracy thermal ionization methods for uranium isotope ratios determination in nuclear fuel. Int J Mass Spectrom 438:166–174. CrossRefGoogle Scholar
  11. 11.
    Richter S, Kühn H, Aregbe Y, Hedberg M, Horta-Domenech J, Mayer K, Zuleger E, Bürger S, Boulyga S, Köpf A, Poths J, Mathew K (2011) Improvements in routine uranium isotope ratio measurements using the modified total evaporation method for multi-collector thermal ionization mass spectrometry. J Anal At Spectrom 26:550–564. CrossRefGoogle Scholar
  12. 12.
    Wegener MR, Mathew KJ, Hasozbek A (2013) The direct total evaporation (DTE) method for TIMS analysis. J Radioanal Nucl Chem 296:441–445. CrossRefGoogle Scholar
  13. 13.
    Mathew KJ, O’Connor G, Hasozbek A, Kraiem M (2013) Total evaporation method for uranium isotope-amount ratio measurements. J Anal At Spectrom 28:866–876CrossRefGoogle Scholar
  14. 14.
    Quemet A, Ruas A, Dalier V, Rivier C (2018) Americium isotope analysis by thermal ionization mass spectrometry using the total evaporation method. Int J Mass Spectrom 431:8–14. CrossRefGoogle Scholar
  15. 15.
    AFNOR (2009) NF T90-210 norm: water quality—protocol for the initial method performance assessment in a laboratoryGoogle Scholar
  16. 16.
    Désenfant M, Priel M, Rivier C (2005) Evaluation des incertitudes des résultats d’analyse. Ref P105 V1. Les Tech l’Ingénieur 1–17Google Scholar
  17. 17.
    International Atomic Energy Agency (2010) International Target Values 2010 for Measurement Uncertainties in Safeguarding Nuclear Materials - STR368. Vienna, AustriaGoogle Scholar
  18. 18.
    Irrgeher J, Vogl J, Santner J, Prohaska T (2015) Chapter 8 measurement strategies. In: Sect. F. Mass Spectrom. Elem. Isot. Anal. The Royal Society of Chemistry, pp 126–151Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.CEA, DEN, DMRC, SA2I, L2ATBagnols sur CèzeFrance
  2. 2.Onsite Laboratory Team, Nuclear Material Laboratory, Office of Safeguards Analytical Services, Department of SafeguardsInternational Atomic Energy Agency, Tokyo Regional OfficeTokyoJapan

Personalised recommendations