Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 321, Issue 3, pp 823–829 | Cite as

Coumarin reactivity in free radical reactions

  • Irina G. AntropovaEmail author
  • Elena S. Kurakina
  • Eldar P. Magomedbekov
  • Phyo Myint Oo
Article
  • 27 Downloads

Abstract

In the present work the final products of coumarin radiation chemical transformation are investigated by chromatography. During radiolysis of coumarin by a 60Co-γ-source, ethanal concentrations were determined and radiation chemical yields for different systems were calculated. A hypothesis of coumarin reactivity in free radical reactions with \({\text{CH}}_{3} {\dot{\text{C}}\text{HOH}}\) is suggested. Coumarin was shown to have reducing properties with carbon-centred α-hydroxyethyl free radicals. Coumarin antioxidant activity increased in the presence of zinc (II) ions.

Keywords

Coumarin Ionizing radiation Free radical reactions Carbon-centred α-hydroxyethyl radical (HER) Zinc (II) HPLC/MS chromatography 

Notes

Acknowledgements

The authors are grateful to Professor Revina AA and to the senior teacher Fenin AA for a discussion of the results of chromato-mass spectrometric studies. The work was supported by Mendeleev University of Chemical Technology of Russia. Project Number 43-2018.

References

  1. 1.
    Harman D (1992) Free radical theory of aging. Mutat Res 275(3–6):257–266CrossRefGoogle Scholar
  2. 2.
    Zhang C-G, Huang J-Cun, Liu T, Li X-Y (2015) JBUON 20(6):1592–1600Google Scholar
  3. 3.
    Howard JA (1972) Advances in free-radical chemistry, vol 2(4). Logess Press, London, p 49Google Scholar
  4. 4.
    Santoke H, Song W, Cooper WJ, Greaves J, Miller GE (2009) J Phys Chem A 113(27):7846–7851CrossRefGoogle Scholar
  5. 5.
    Lacy A, O’Kennedy R (2004) Curr Pharm Des 10(30):3797–3811CrossRefGoogle Scholar
  6. 6.
    Wang K, Zhang Y, Ekinwe SIN et al (2010) Med Chem Res.  https://doi.org/10.1007/s0044-010-9426-y Google Scholar
  7. 7.
    Efremov AA, Zykova ID, Tselukovskaya MM (2012) Chem Plant Mater 3:111–114Google Scholar
  8. 8.
    Basova EV (2004) Candidate of science (Pharm.). Dissertation. Sib. Gov. University of MedGoogle Scholar
  9. 9.
    Stack W, Bailey BK (1969) Can J Chem 47:3577–3583CrossRefGoogle Scholar
  10. 10.
    Roginsky VA (1988) Phenolic antioxidants: reactivity and effectiveness. Science, MoscowGoogle Scholar
  11. 11.
    Antropova IG, Fenin AA, Revina AA (2007) High Energy Chem.  https://doi.org/10.1134/s0018143907020026 Google Scholar
  12. 12.
    Louit G, Hanedanian M, Taran F, Coggigny H, Renault JP, Pin S (2009) Analyst.  https://doi.org/10.1039/b813871k Google Scholar
  13. 13.
    Louit G, Foley S, Cabilic J, Coffigny H et al (2005) Radiat Phys Chem 72:119–124CrossRefGoogle Scholar
  14. 14.
    Kosobutsky VS, Mayboroda VD (1989) High Energy Chem 23(1):15Google Scholar
  15. 15.
    Rajesh MP, Natvar JP (2011) JAPER 1:52–68Google Scholar
  16. 16.
    Marfak A, Trouillas P, Allais DP, Calliste CA et al (2004) Biochim Biophys Acta 1670:28–39CrossRefGoogle Scholar
  17. 17.
    Brinkevich SD, Shadyro OI (2008) Bioorg Med Chem Lett 18:6448–6450CrossRefGoogle Scholar
  18. 18.
    Brinkevich SD, Ostrovskaya NI, Parkhach ME, Samovich SN, Shadyro OI (2012) Free Radic Res 46(3):295–302CrossRefGoogle Scholar
  19. 19.
    Brinkevich SD, Samovich SN, Shadyro OI (2011) High Energy Chem 45(6):570–573CrossRefGoogle Scholar
  20. 20.
    Revina AA (1995) Doctor of Science (Chem.). Dissertation. Institute of Physics and Chemistry, MoscowGoogle Scholar
  21. 21.
    Antropova IG, Phyo Myint OO (2018) Booklet of abstracts Czech Chemical Society Simposium Series. In RadChem-2018, vol 16(2), p 217Google Scholar
  22. 22.
    Antropova IG, Fenin AA, Semenistaya EN, Larionov OG et al (2008) High Energy Chem 42(6):559–560CrossRefGoogle Scholar
  23. 23.
    Menshikova EB, Lankin VZ, Zenkov NK et al (2006) Oxidative stress. Prooxidants and Antioxidants. Word, MoscowGoogle Scholar
  24. 24.
    Patent No 2162599—method of identification and determination of mass concentration of ethanal in ethanol-containing solutionsGoogle Scholar
  25. 25.
    Pikaev AK (1985) The modern radiation chemistry: general aspects, experimental equipment and methods. Science, MoscowGoogle Scholar
  26. 26.
    Kaushanskii DA (1970) Atom Energy 29(5):398–400Google Scholar
  27. 27.
    Traven VF, Vorobjeva LI, Chibisova TA, Carberry EA, Beyer NJ (1997) Can J Chem 75:365–376CrossRefGoogle Scholar
  28. 28.
    Pikaev AK, Kabakchi CA (1982) Reactivity of primary products of radiolysis of water: a Handbook. Energoatomizdat, MoscowGoogle Scholar
  29. 29.
    Pikaev AK (1986) The modern radiation chemistry: radiolysis of gases and liquids. Science, MoscowGoogle Scholar
  30. 30.
    Petryaev EP, Shadyro OI (1986) Radiation chemistry of bifunctional organic compounds. University, MinskGoogle Scholar
  31. 31.
    Freeman GR (1974) Radiation chemistry of ethanol. NBS, WashingtonCrossRefGoogle Scholar
  32. 32.
    Ul’yanova EV, Larionov OG, Revina AA et al (2013) Russ. Chem Rev 82(12):1117–1134Google Scholar
  33. 33.
    Denisov ET, Afanas`ev IB (2005) Oxidation and antioxidants in organic chemistry and biology. Taylor and Francis Group, Milton ParkCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.D. Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations