Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 321, Issue 3, pp 783–790 | Cite as

Investigation of the minimum detectable activity of radioxenon isotopes using an active guard

  • Mostafa AhmadiEmail author
Article
  • 18 Downloads

Abstract

One of the current challenges of the Comprehensive Nuclear-Test-Ban Treaty Organization, is reducing the minimum detectable activity and increasing the precision of the detection of radioactive noble gases; namely 135Xe, 133Xe, 133mXe, and 131mXe. These gases are typically detected by systems that use beta-gamma coincidence spectroscopy and gamma spectroscopy for activity measurement. In all of them, a lead shield (passive guard) is used to reduce the environmental isotopes. In this work, the concept of the active guard used in LSC systems has been improved upon for gaseous radioactive samples in a phoswich detector through Geant4 simulations. The simulation results showed that the use of an active guard results in a reduction in the minimum detectable activity, compared to those without an active guard.

Keywords

Minimum detectable activity (MDA) Xenon isotopes Geant4 Phoswich detector Beta–gamma coincidence counting Comprehensive Nuclear Test Ban Treaty Organization (CTBTO) 

Notes

References

  1. 1.
    Bowyer T, Abel K, Hubbard C, Panisko M, Reeder P, Thompson R et al (1999) Field testing of collection and measurement of radioxenon for the Comprehensive Test Ban Treaty. J Radioanal Nucl Chem 240(1):109–122CrossRefGoogle Scholar
  2. 2.
    Cagniant A, Le Petit G, Gross P, Douysset G, Richard-Bressand H, Fontaine J-P (2014) Improvements of low-level radioxenon detection sensitivity by a state-of-the art coincidence setup. Appl Radiat Isot 87:48–52CrossRefGoogle Scholar
  3. 3.
    Zhang W, Mekarski P, Lam J, Ungar K, Pellerin E (2010) Geant4 Monte Carlo radioxenon beta-gamma coincidence efficiency simulation for a phoswich detector. J Radioanal Nucl Chem 285(3):475–482CrossRefGoogle Scholar
  4. 4.
    Auer M, Axelsson A, Blanchard X, Bowyer TW, Brachet G, Bulowski I et al (2004) Intercomparison experiments of systems for the measurement of xenon radionuclides in the atmosphere. Appl Radiat Isot 60(6):863–877CrossRefGoogle Scholar
  5. 5.
    Fontaine J-P, Pointurier F, Blanchard X, Taffary T (2004) Atmospheric xenon radioactive isotope monitoring. J Environ Radioact 72(1–2):129–135CrossRefGoogle Scholar
  6. 6.
    Cooper MW, McIntyre JI, Bowyer TW, Carman AJ, Hayes JC, Heimbigner TR et al (2007) Redesigned β–γ radioxenon detector. Nucl Instrum Methods Phys Res Sect A 579(1):426–430CrossRefGoogle Scholar
  7. 7.
    Ely JH, Aalseth CE, McIntyre JI (2005) Novel beta-gamma coincidence measurements using phoswich detectors. J Radioanal Nucl Chem 263(1):245–250CrossRefGoogle Scholar
  8. 8.
    Hennig W, Tan H, Warburton WK, McIntyre JI (2006) Single-channel beta-gamma coincidence detection of radioactive xenon using digital pulse shape analysis of phoswich detector signals. IEEE Trans Nucl Sci 53(2):620–624CrossRefGoogle Scholar
  9. 9.
    Mekarski P, Zhang W, Ungar K, Bean M, Korpach E (2009) Monte Carlo simulation of a PhosWatch detector using Geant4 for xenon isotope beta–gamma coincidence spectrum profile and detection efficiency calculations. Appl Radiat Isot 67(10):1957–1963CrossRefGoogle Scholar
  10. 10.
    Farsoni A, Hamby D (2007) A system for simultaneous beta and gamma spectroscopy. Nucl Instrum Methods Phys Res Sect A 578(3):528–536CrossRefGoogle Scholar
  11. 11.
    de la Fuente R, de Celis B, del Canto V, Lumbreras J, de Celis Alonso B, Martín-Martín A et al (2008) Low level radioactivity measurements with phoswich detectors using coincident techniques and digital pulse processing analysis. J Environ Radioact 99(10):1553–1557CrossRefGoogle Scholar
  12. 12.
    Hennig W, Asztalos S, Warburton W, Fallu-Labruyere A, Samie A, Mekarski P (2014) Development of a Phoswich detector for radioxenon field measurements. IEEE Trans Nucl Sci 61(5):2778–2785CrossRefGoogle Scholar
  13. 13.
    Usuda S (1992) Development of ZnS (Ag)/NE102A and ZnS (Ag)/Stilbene phoswich detectors for simultaneous α and β (γ) counting. J Nucl Sci Technol 29(9):927–929CrossRefGoogle Scholar
  14. 14.
    Usuda S, Abe H, Mihara A (1994) Phoswich detectors combining doubly or triply ZnS (Ag), NE102A, BGO and/or NaI (Tl) scintillators for simultaneous counting of α, β and γ rays. Nucl Instrum Methods Phys Res Sect A 340(3):540–545CrossRefGoogle Scholar
  15. 15.
    Usuda S, Sakurai S, Yasuda K (1997) Phoswich detectors for simultaneous counting of α-, β (γ)-rays and neutrons. Nucl Instrum Methods Phys Res Sect A 388(1–2):193–198CrossRefGoogle Scholar
  16. 16.
    Usuda S, Yasuda K, Sakurai S (1998) Development of phoswich detectors for simultaneous counting of alpha particles and other radiations (emitted from actinides). Appl Radiat Isot 49(9):1131–1134CrossRefGoogle Scholar
  17. 17.
    Cember H (1969) Introduction to health physics. Pergamon Press, OxfordGoogle Scholar
  18. 18.
    Knoll GF (2010) Radiation detection and measurement. Wiley, HobokenGoogle Scholar
  19. 19.
    Cagniant A, Topin S, Le Petit G, Gross P, Delaune O, Philippe T et al (2017) SPALAX NG: a breakthrough in radioxenon field measurement. Appl Radiat Isot 134:461–465CrossRefGoogle Scholar
  20. 20.
    Farsoni A, Hamby D (2005) MCNP analysis of a multilayer phoswich detector for β-particle dosimetry and spectroscopy. Nucl Instrum Methods Phys Res Sect A 555(1):225–230CrossRefGoogle Scholar
  21. 21.
    Hofstetter K, Cable P, Beals D (1999) Field analyses of tritium at environmental levels. Nucl Instrum Methods Phys Res Sect A 422(1–3):761–766CrossRefGoogle Scholar
  22. 22.
    Valenta RJ, Noakes JE (1992) Liquid scintillation measurement system with active guard shield. Google PatentsGoogle Scholar
  23. 23.
    Schönhofer F (1995) Liquid scintillation spectrometry in environmental measurements. Sci Total Environ 173:29–40CrossRefGoogle Scholar
  24. 24.
    Agostinelli S, Allison J, Ka Amako, Apostolakis J, Araujo H, Arce P et al (2003) GEANT4: a simulation toolkit. Nucl Instrum Methods Phys Res Sect A 506(3):250–303CrossRefGoogle Scholar
  25. 25.
    Zhang W, Mekarski P, Bean M, Yi J, Ungar K (2011) An optimized design of single-channel beta-gamma coincidence phoswich detector by Geant4 Monte Carlo simulations. Sci Technol Nucl Install.  https://doi.org/10.1155/2011/741396 Google Scholar
  26. 26.
    Vojtyla P, Beer J, Šťavina P (1994) Experimental and simulated cosmic muon induced background of a Ge spectrometer equipped with a top side anticoincidence proportional chamber. Nucl Instrum Methods Phys Res Sect B 86(3–4):380–386CrossRefGoogle Scholar
  27. 27.
    Povinec PP, Vojtyla P, Comanducci J-F (2008) Monte Carlo simulation of background characteristics of gamma-ray spectrometers: a comparison with experiment. Radioact Environ 11:163–208CrossRefGoogle Scholar
  28. 28.
    Cagniant A, Bonneau T, Le Petit G, Douysset G, Gross P, Fontaine J-P (2015) Cosmic muon effect in the background of a Si/Si coincidence measurement: study and application. Radiat Phys Chem 116:335–340CrossRefGoogle Scholar
  29. 29.
    On-site inspection noble gas field operation tests (NG09). Provisional Technical Secretariat of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization: 2011 Contract No.: CTBT/PTS/TR/2011-1Google Scholar
  30. 30.
    Ringbom A, Larson T, Axelsson A, Elmgren K, Johansson C (2003) SAUNA: a system for automatic sampling, processing, and analysis of radioactive xenon. Nucl Instrum Methods Phys Res Sect A 508(3):542–553CrossRefGoogle Scholar
  31. 31.
    Hennig W, Warburton WK, Fallu-Labruyere A, Sabourov K, Cooper MW, McIntyre JI et al (2009) Radioxenon measurements with the Phoswatch detector system. In: Proceedings of the 2009 monitoring research review: ground-based nuclear explosion monitoring technologies, UR-09-05276, vol 2, pp 641–652Google Scholar
  32. 32.
    Padoani F, Karhu P, Medici F, Wernsperger B, Werzi R (2005) Setting up and implementation of a global atmospheric radioactivity monitoring network for CTBT verification purposes. J Radioanal Nucl Chem 263(1):183–188CrossRefGoogle Scholar
  33. 33.
    Ungar K, Zhang W, Aarnio P, Ala-Heikkila J, Toivonen H, Siiskonen T et al (2007) Automation of analysis of airborne radionuclides observed in Canadian CTBT radiological monitoring networks using LINSSI. J Radioanal Nucl Chem 272(2):285–291CrossRefGoogle Scholar
  34. 34.
    Biegalski S, Ezekoye O, Pickering M, Peña J, Waye S (2008) Detection limit improvements forecasted at CTBTO IMS radionuclide stations based on size separation of aerosols by aerodynamic diameter. J Radioanal Nucl Chem 276(2):441–445CrossRefGoogle Scholar
  35. 35.
    Axelsson A, Ringbom A (2003) Xenon air activity concentration analysis from coincidence data. Rep FOI-R-0913-SEGoogle Scholar
  36. 36.
    Hennig W, Warburton WK, Fallu-Labruyere A, Sabourov K, Cooper MW, McIntyre JI et al (2009) Development of a phoswich detector system for radioxenon monitoring. J Radioanal Nucl Chem 282(3):681CrossRefGoogle Scholar
  37. 37.
    Currie LA (1968) Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal Chem 40(3):586–593CrossRefGoogle Scholar
  38. 38.
    Bowyer TW, Schlosser C, Abel KH, Auer M, Hayes JC, Heimbigner TR et al (2002) Detection and analysis of xenon isotopes for the comprehensive nuclear-test-ban treaty international monitoring system. J Environ Radioact 59(2):139–151CrossRefGoogle Scholar
  39. 39.
    Atwood DA (2013) Radionuclides in the environment. Wiley, HobokenGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Energy Engineering and PhysicsAmirkabir UniversityTehranIran

Personalised recommendations