Skip to main content
Log in

Palaeoenvironmental significance and pathways of calcrete development investigated with nuclear and related methods

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The genesis and development of calcretes are discussed by using nuclear and related methods of analyses. In the studied calcrete, smectite is the main clay mineral associated with palygorskite. Chemical elements proportions, particularly V, U, Mn, Cu, Ba and REE, indicate a change to more oxidizing conditions and the contribution of bio-mediated processes in the oxalate-carbonate pathway, also confirmed by the presence of needle-fibre calcite. The proposed pathways leading to the studied calcrete development comprise both abiotic and biogenic genesis, emphasizing the polygenetic character due to different agents and processes and the paleoenvironmental trend towards aridification, with a transition between lacustrine and palustrine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Durand N, Gunnell Y, Curmi P, Ahmad SM (2006) Pathways of calcrete development on weathered silicate rocks in Tamil Nadu, India: mineralogy, chemistry and paleoenvironmental implications. Sediment Geol 192:1–18. https://doi.org/10.1016/j.sedgeo.2006.03.020

    Article  CAS  Google Scholar 

  2. Platt NH, Wright VP (2009) Lacustrine carbonates: facies models, facies distributions and hydrocarbon aspects. In: Anadón P, Cabrera L, Kelts K (eds) Lacustrine facies analysis. Wiley, New York

    Google Scholar 

  3. Alonso-Zarza AM, Tanner LH (2010) Carbonates in continental settings: facies, environments, and processes. Elsevier, Amsterdam

    Google Scholar 

  4. Khadkikar AS, Chamyal LS, Ramesh R (2000) The character and genesis of calcrete in Late Quaternary alluvial deposits, Gujarat, western India, and its bearing on the interpretation of ancient climates. Palaeogeogr Palaeoclimatol Palaeoecol 162:239–261. https://doi.org/10.1016/S0031-0182(00)00130-9

    Article  Google Scholar 

  5. Bowen GJ, Daniels AL, Bowen BB (2008) Paleoenvironmental isotope geochemistry and paragenesis of lacustrine and palustrine carbonates, Flagstaff Formation, Central Utah, U.S.A. J Sediment Res 78:162–174. https://doi.org/10.2110/jsr.2008.021

    Article  CAS  Google Scholar 

  6. Eren M, Kadir S, Hatipoǧlu Z, Gül M (2008) Quaternary calcrete development in the Mersin area, southern Turkey. Turk J Earth Sci 17:763–784

    CAS  Google Scholar 

  7. Wanas HA, Soliman HE (2014) Calcretes and palustrine carbonates in the Oligo-Miocene clastic-carbonate unit of the Farafra Oasis, Western Desert, Egypt: their origin and paleoenvironmental significance. J Afr Earth Sci 95:145–154. https://doi.org/10.1016/j.jafrearsci.2014.03.012

    Article  Google Scholar 

  8. Soukaina E, Lahcen D, Badr A, Nathalie F (2017) Development of quaternary calcrete in the Tensift Al Haouz area, Central Morocco: characterization and environmental significance. CATENA 149:331–340. https://doi.org/10.1016/j.catena.2016.10.009

    Article  CAS  Google Scholar 

  9. Netterberg F (1980) Geology of Southern African calcretes: 1. Terminology, description, macrofeatures and classification. South Afr J Geol 83:255–283

    Google Scholar 

  10. Machette MN (1985) Calcic soils of the south-western United States. Spec Pap Geol Soc Am 203:1–21. https://doi.org/10.1130/SPE203-p1

    Article  CAS  Google Scholar 

  11. Pimentel NL, Wright VP, Azevedo TM (1996) Distinguishing early groundwater alteration effects from pedogenesis in ancient alluvial basins: examples from the palaeogene of southern Portugal. Sediment Geol 105:1–10. https://doi.org/10.1016/0037-0738(96)00034-6

    Article  CAS  Google Scholar 

  12. Khadkikar AS, Merh SS, Malik JN, Chamyal LS (1998) Calcretes in semi-arid alluvial systems: formative pathways and sinks. Sediment Geol 116:251–260. https://doi.org/10.1016/S0037-0738(97)00103-6

    Article  CAS  Google Scholar 

  13. Nash DJ, McLaren SJ (2007) Geochemical Sediments and Landscapes. Blackwell Publishing Ltd, Oxford

    Book  Google Scholar 

  14. Chen XY, Lintern MJ, Roach IC (2002) Calcrete: characteristics, distribution and use in mineral exploration. Cooperative Research Centre for Landscape Environments and Mineral Exploration, Kensington

    Google Scholar 

  15. Alonso-Zarza AM (2003) Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth Sci Rev 60:261–298. https://doi.org/10.1016/S0012-8252(02)00106-X

    Article  CAS  Google Scholar 

  16. Kaplan MY, Eren M, Kadir S, Kapur S (2013) Mineralogical, geochemical and isotopic characteristics of Quaternary calcretes in the Adana region, southern Turkey: implications on their origin. CATENA 101:164–177. https://doi.org/10.1016/j.catena.2012.09.004

    Article  CAS  Google Scholar 

  17. Küçükuysal C, Kapur S (2014) Mineralogical, geochemical and micromorphological evaluation of the Plio-Quaternary paleosols and calcretes from Karahamzall, Ankara (Central Turkey). Geol Carpathica 65:241–253. https://doi.org/10.2478/geoca-2014-0014

    Article  CAS  Google Scholar 

  18. Achyuthan H, Shankar N, Braida M, Ahmad SM (2012) Geochemistry of calcretes (calcic palaeosols and hardpan), Coimbatore, Southern India: formation and paleoenvironment. Quat Int 265:155–169. https://doi.org/10.1016/j.quaint.2012.01.037

    Article  Google Scholar 

  19. Singh BP, Pawar JS, Patra A (2013) Geochemistry of Late Eocene/Oligocene calcretes (caliche) of the Northwestern Himalaya, India. Himal Geol 34:135–140

    Google Scholar 

  20. Grevenitz P, Chivas AR (2005) Statistical methods for determining geochemical residence in mineral phases: evaluation of pedogenic calcreto trace element data. In: Roach IC (ed) Regolith 2005—ten years of CRC LEME. CRC LEME, pp 120–124

  21. McQueen KG (2006) Calcrete geochemistry in the Cobar-Girilambone region. New South Wales CRC LEME Open File Rep 200:27

    Google Scholar 

  22. Prudêncio MI, Dias MI, Waerenborgh JC et al (2011) Rare earth and other trace and major elemental distribution in a pedogenic calcrete profile (Slimene, NE Tunisia). CATENA 87:147–156. https://doi.org/10.1016/j.catena.2011.05.018

    Article  CAS  Google Scholar 

  23. Buggle B, Glaser B, Hambach U et al (2011) An evaluation of geochemical weathering indices in loess-paleosol studies. Quat Int 240:12–21. https://doi.org/10.1016/j.quaint.2010.07.019

    Article  Google Scholar 

  24. Tandon SK, Kumar S (1999) Semi-arid/arid zone calcretes: a review. In: Singhvi AK, Derbyshire E (eds) Palaeoenviron- mental reconstruction in arid lands. Oxford and IBH Publishing Co, New Delhi, pp 109–152

    Google Scholar 

  25. Dhir RP, Tandon SK, Sareen BK et al (2004) Calcretes in the Thar desert: genesis, chronology and palaeoenvironment. Proc Indian Acad Sci Earth Planet Sci 113:473–515. https://doi.org/10.1007/BF02716737

    Article  Google Scholar 

  26. Khoury HN, Salameh EM, Clark ID (2014) Mineralogy and origin of surficial uranium deposits hosted in travertine and calcrete from central Jordan. Appl Geochem 43:49–65. https://doi.org/10.1016/j.apgeochem.2014.02.005

    Article  CAS  Google Scholar 

  27. Verrecchia EP, Dumont J-L, Verrecchia KE (1993) Role of calcium oxalate biomineralization by fungi in the formation of calcretes: a case study from Nazareth, Israel. J Sediment Res 63:1000–1006

    CAS  Google Scholar 

  28. Pimentel NLV (2002) Pedogenic and early diagenetic processes in Palaeogene alluvial fan and lacustrine deposits from the Sado Basin (S Portugal). Sediment Geol 148:123–138. https://doi.org/10.1016/S0037-0738(01)00213-5

    Article  CAS  Google Scholar 

  29. Alves TM, Gawthorpe RL, Hunt DW, Monteiro JH (2003) Cenozoic tectono-sedimentary evolution of the western Iberian margin. Mar Geol 195:75–108. https://doi.org/10.1016/S0025-3227(02)00683-7

    Article  Google Scholar 

  30. Pais J (2012) The paleogene and neogene of Western Iberia (Portugal). Springer, Berlin

    Book  Google Scholar 

  31. Barros e Carvalhosa A, Galopim de Carvalho AM (1970) Carta Geológica de Portugal na escala de 1/50000, Lisboa, Notícia explicativa da Folha 43-B Moura

  32. Oliveira JT (1992) Carta Geológica de Portugal à escala 1:200 000, Lisboa, Noticia Explicativa da Folha 8

  33. Stosch H-G (2016) Neutron activation analysis of the rare earth elements (REE)—with emphasis on geological materials. Phys Sci Rev 1:1–25. https://doi.org/10.1515/psr-2016-0062

    Article  Google Scholar 

  34. Gméling K, Simonits A, Sziklai László I, Párkányi D (2014) Comparative PGAA and NAA results of geological samples and standards. J Radioanal Nucl Chem 300:507–516. https://doi.org/10.1007/s10967-014-3032-2

    Article  CAS  Google Scholar 

  35. Dias MI, Prudêncio MI, Gouveia MA et al (2010) Chemical tracers of Lusitanian amphorae kilns from the Tagus estuary (Portugal). J Archaeol Sci 37:784–798. https://doi.org/10.1016/j.jas.2009.11.008

    Article  Google Scholar 

  36. Prudêncio MI, Dias MI, Gouveia MA et al (2009) Geochemical signatures of Roman amphorae produced in the Sado River estuary, Lusitania (Western Portugal). J Archaeol Sci 36:873–883. https://doi.org/10.1016/j.jas.2008.11.019

    Article  Google Scholar 

  37. Marques R, Waerenborgh JCC, Prudêncio MII et al (2014) Iron speciation in volcanic topsoils from Fogo island (Cape Verde)—iron oxide nanoparticles and trace elements concentrations. CATENA 113:95–106. https://doi.org/10.1016/j.catena.2013.09.010

    Article  CAS  Google Scholar 

  38. Oyedotun TDT (2018) X-ray fluorescence (XRF) in the investigation of the composition of earth materials: a review and an overview. Geol Ecol Landsc 2:148–154. https://doi.org/10.1080/24749508.2018.1452459

    Article  Google Scholar 

  39. Francis RE, Aguilar R (1995) Calcium carbonate effects on soil textural class in semiarid wildland soils. Arid Soil Res Rehabil. https://doi.org/10.1080/15324989509385882

    Article  Google Scholar 

  40. Kerry R, Rawlins BG, Oliver MA, Lacinska AM (2009) Problems with determining the particle size distribution of chalk soil and some of their implications. Geoderma 152:324–337. https://doi.org/10.1016/j.geoderma.2009.06.018

    Article  CAS  Google Scholar 

  41. Thorez J (1976) Practical identification of clay minerals. G. Lelotte, Belgium

    Google Scholar 

  42. Brindley GW, Brown G, Brindley GW, Brown G, Brindley GW, Brown G, Brindley GW, Brown G (1980) Crystal structures of clay minerals and their X-ray identification. Monograph 5. Mineralogical Society, London

    Google Scholar 

  43. Moore D, Reynolds R, Moore MD, Reynolds RC Jr (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford

    Google Scholar 

  44. Schultz LG (1964) Quantitative interpretation of mineralogical composition X-ray and chemical data for the Pierre Shale. US Geol Surv Prof Pap 391:1–31

    Google Scholar 

  45. Biscaye PE (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull 76:803–832

    Article  CAS  Google Scholar 

  46. Martin-Pozas JM (1968) El analisis mineralógico cuantitativo de los filosilicatos de la arcilla por difracción de rayos X. University of Granada, Spain

    Google Scholar 

  47. Rocha FJFT (1993) Argilas aplicadas a estudos litoestratigráficos e paleoambientais na bacia sedimentar de Aveiro. University of Aveiro, Portugal

    Google Scholar 

  48. Trindade MJ, Dias MI, Coroado J, Rocha F (2009) Mineralogical transformations of calcareous rich clays with firing: a comparative study between calcite and dolomite rich clays from Algarve, Portugal. Appl Clay Sci 42:345–355. https://doi.org/10.1016/j.clay.2008.02.008

    Article  CAS  Google Scholar 

  49. Marques R, Dias MI, Isabel Prudêncio M, Rocha F (2011) Upper cretaceous clayey levels from western Portugal (Aveiro and Taveiro regions): clay mineral and trace-element distribution. Clays Clay Miner 59:315–327. https://doi.org/10.1346/CCMN.2011.0590307

    Article  CAS  Google Scholar 

  50. Trindade MJ, Prudêncio MI, Burbidge CI et al (2014) Study of an aplite dyke from the Beira uraniferous province in Fornos de Algodres area (Central Portugal): trace elements distribution and evaluation of natural radionuclides. Appl Geochem 44:111–120. https://doi.org/10.1016/j.apgeochem.2013.07.024

    Article  CAS  Google Scholar 

  51. Marques R, Prudêncio MI, Dias MI, Rocha F (2011) Patterns of rare earth and other trace elements in different size fractions of clays of Campanian-Maastrichtian deposits from the Portuguese western margin (Aveiro and Taveiro Formations). Chem Erde 71:337–347. https://doi.org/10.1016/j.chemer.2011.02.002

    Article  CAS  Google Scholar 

  52. Trindade MJ, Dias MI, Rocha F et al (2011) Bromine volatilization during firing of calcareous and non-calcareous clays: archaeometric implications. Appl Clay Sci 53:489–499. https://doi.org/10.1016/j.clay.2010.07.001

    Article  CAS  Google Scholar 

  53. Govindaraju K (1994) Compilation of working values and sample description for 383 Geostandards. Geostand Newsl 18:1–158. https://doi.org/10.1046/j.1365-2494.1998.53202081.x-i1

    Article  CAS  Google Scholar 

  54. Dias MI, Prudencio MI (2007) Neutron activation analysis of archaeological materials: an overview of the ITN NAA Laboratory, Portugal. Archaeometry 49:383–393

    Article  CAS  Google Scholar 

  55. Dias MI, Prudêncio MI, Valera AC (2017) Provenance and circulation of Bell Beakers from Western European societies of the 3rd millennium BC: the contribution of clays and pottery analyses. Appl Clay Sci 146:334–342. https://doi.org/10.1016/j.clay.2017.06.026

    Article  CAS  Google Scholar 

  56. Korotev RL (1996) A self-consistent compilation of elemental concentration data for 93 geochemical reference samples. Geostand Newsl 20:217–245. https://doi.org/10.1111/j.1751-908X.1996.tb00185.x

    Article  CAS  Google Scholar 

  57. Korotev R (1996) On the relationship between the Apollo 16 ancient regolith breccias and feldspathic fragmental breccias, and the composition of the prebasin crust in the Central Highlands of the Moon. Meteorit Planet Sci 31:403–412. https://doi.org/10.1111/j.1945-5100.1996.tb02078.x

    Article  CAS  Google Scholar 

  58. Rudnick RL, Gao S (2003) The composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise geochem: the crust, vol 3. Elsevier, Oxford, pp 1–64

    Google Scholar 

  59. Rocha F, Ramalho E (2003) Mineralogia dos paleossolos e crostas carbonatadas do Cabo Mondego (Portugal). Ciencias da Terra No Esp V No Esp.V:B93–B96

  60. Retallack GJ (2001) Soils of the past: an introduction to paleopedology, 2nd edn. Wiley, Oxford

    Book  Google Scholar 

  61. Sheldon ND, Tabor NJ (2009) Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Sci Rev 95:1–52. https://doi.org/10.1016/j.earscirev.2009.03.004

    Article  CAS  Google Scholar 

  62. Verrecchia EP, Verrecchia KE (1994) Needle-fiber calcite; a critical review and a proposed classification. J Sediment Res 64:650–664. https://doi.org/10.1306/D4267E33-2B26-11D7-8648000102C1865D

    Article  Google Scholar 

  63. Dill HG (2010) The “chessboard” classification scheme of mineral deposits: mineralogy and geology from aluminium to zirconium. Earth Sci Rev 100:1–420. https://doi.org/10.1016/j.earscirev.2009.10.011

    Article  CAS  Google Scholar 

  64. Salminen R, Batista MJ, Bidovec M et al (2005) FOREGS geochemical atlas of Europe, Part 1: background information, methodology and maps. Geological Survey of Finland, Espoo

    Google Scholar 

  65. Marques R, Jorge A, Franco D et al (2010) Clay resources in the Nelas region (Beira Alta), Portugal. A contribution to the characterization of potential raw materials for prehistoric ceramic production. Clay Miner 45:353–370. https://doi.org/10.1180/claymin.2010.045.3.353

    Article  CAS  Google Scholar 

  66. Marques R, Prudêncio MI, Rocha F et al (2012) REE and other trace and major elements in the topsoil layer of Santiago island, Cape Verde. J Afr Earth Sci 64:20–33. https://doi.org/10.1016/j.jafrearsci.2011.11.011

    Article  CAS  Google Scholar 

  67. Goldberg S, Forster HS, Godfrey CL (1996) Molybdenum adsorption on oxides, clay minerals, and soils. Soil Sci Soc Am J 60:425. https://doi.org/10.2136/sssaj1996.03615995006000020013x

    Article  CAS  Google Scholar 

  68. Capo RC, Chadwick OA (1999) Sources of strontium and calcium in desert soil and calcrete. Earth Planet Sci Lett 170:61–72. https://doi.org/10.1016/S0012-821X(99)00090-4

    Article  CAS  Google Scholar 

  69. Xiongxin D, Zuyl T (2006) Effect of carbonates on sorption and migration of radiostrontium in calcareous soil. J Radioanal Nucl Chem 242:727–730. https://doi.org/10.1007/bf02347386

    Article  Google Scholar 

  70. Verrecchia EP (2000) Fungi and sediments. Microb Sediments. https://doi.org/10.1007/978-3-662-04036-2_9

    Article  Google Scholar 

  71. Verrecchia EP, Braissant O, Cailleau G (2006) The oxalate-carbonate pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria. Fungi Biogeochem Cycles 9780521845:289–310. https://doi.org/10.1017/CBO9780511550522.013

    Article  Google Scholar 

  72. Gadd GM, Bahri-Esfahani J, Li Q et al (2014) Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol Rev 28:36–55. https://doi.org/10.1016/j.fbr.2014.05.001

    Article  Google Scholar 

  73. Dorn RI (2007) Rock varnish. In: Nash IJ, McLaren DJ (eds) Geochemical Sediments and Landscapes. Wiley, New York, pp 246–297

    Chapter  Google Scholar 

  74. Krug MA (1995) Geochemical exploration in Calcrete Terrains. Rhodes University, Grahamstown

    Google Scholar 

  75. Lopez-Galindo A, Ben Aboud A, Fenoll Hach-Ali P, Casas Ruiz J (1996) Mineralogical and geochemical characterization of palygorskite from Gabasa (NE Spain). Evidence of a detrital precursor. Clay Miner 31:33–44. https://doi.org/10.1180/claymin.1996.031.1.03

    Article  CAS  Google Scholar 

  76. Laveuf C, Cornu S (2009) A review on the potentiality of Rare Earth Elements to trace pedogenetic processes. Geoderma 154:1–12. https://doi.org/10.1016/j.geoderma.2009.10.002

    Article  CAS  Google Scholar 

  77. Turan NG, Elevli S, Mesci B (2011) Adsorption of copper and zinc ions on illite: determination of the optimal conditions by the statistical design of experiments. Appl Clay Sci. https://doi.org/10.1016/j.clay.2011.04.010

    Article  Google Scholar 

  78. Sheldon ND, Chakrabarti R, Retallack GJ, Smith RMH (2014) Contrasting geochemical signatures on land from the Middle and Late Permian extinction events. Sedimentology 61:1812–1829. https://doi.org/10.1111/sed.12117

    Article  CAS  Google Scholar 

  79. Strong GE, Giles JRA, Wright VP (1992) A Holocene calcrete from North Yorkshire, England: implications for interpreting palaeoclimates using calcretes. Sedimentology 39:333–347. https://doi.org/10.1111/j.1365-3091.1992.tb01042.x

    Article  CAS  Google Scholar 

  80. Bajnóczi B, Kovács-Kis V (2006) Origin of pedogenic needle-fiber calcite revealed by micromorphology and stable isotope composition-a case study of a Quaternary paleosol from Hungary. Chem Erde 66:203–212. https://doi.org/10.1016/j.chemer.2005.11.002

    Article  CAS  Google Scholar 

  81. Jones B (2017) Review of aragonite and calcite crystal morphogenesis in thermal spring systems. Sediment Geol 354:9–23. https://doi.org/10.1016/j.sedgeo.2017.03.012

    Article  CAS  Google Scholar 

  82. Curry MD, Boston PJ, Spilde MN et al (2009) Cottonballs, a unique subaqeous moonmilk, and abundant subaerial moonmilk in Cataract Cave, Tongass National Forest, Alaska. Int J Speleol 38:111–128. https://doi.org/10.5038/1827-806X.38.2.3

    Article  Google Scholar 

  83. Churchman GJ, Lowe DJ (2012) Alteration, formation, and occurrence of minerals in soils. In: Huang PM, Li Y, Sumner ME (eds) Handbook of soil sciences—volume 1: properties and processes, 2nd edn. CRC Press, Boca Raton, pp 1–72

    Google Scholar 

  84. Galán E (2006) Chapter 14 genesis of clay minerals. Dev Clay Sci 1:1129–1162. https://doi.org/10.1016/S1572-4352(05)01042-1

    Article  CAS  Google Scholar 

  85. Birsoy R (2002) Formation of sepiolite-palygorskite and related minerals from solution. Clays Clay Miner 50:736–745. https://doi.org/10.1346/000986002762090263

    Article  CAS  Google Scholar 

  86. Knidiri A, Daoudi L, El Ouahabi M et al (2014) Palaeogeographic controls on palygorskite occurrence in Maastrichtian-Palaeogene sediments of the Western High Atlas and Meseta Basins (Morocco). Clay Miner 49:595–608. https://doi.org/10.1180/claymin.2014.049.4.08

    Article  CAS  Google Scholar 

  87. Singer A (1979) Palygorskite in sediments: detrital, diagenetic or neoformed—a critical review. Geol Rundschau 68:996–1008. https://doi.org/10.1007/BF02274683

    Article  Google Scholar 

  88. Chamley H (1989) Clay sedimentology. Springer, New York

    Book  Google Scholar 

  89. Milnes AR (1992) Calcretes. Weathering soils and paleosoils. In: Martini IP, Chesworth W (eds) Developments in earth surface processes, vol 2. Elsevier, Amsterdam

    Google Scholar 

  90. Gallala W, Gaied ME, Essefi E, Montacer M (2010) Pleistocene calcretes from eastern Tunisia: the stratigraphy, the microstructure and the environmental significance. J Afr Earth Sci 58:445–456. https://doi.org/10.1016/j.jafrearsci.2010.04.009

    Article  Google Scholar 

  91. Kadir S, Eren M, Külah T et al (2014) Genesis of Late Miocene-Pliocene lacustrine palygorskite and calcretes from Kır s ehir, central Anatolia, Turkey. Clay Miner 49:473–494. https://doi.org/10.1180/claymin.2014.049.3.09

    Article  CAS  Google Scholar 

  92. AlShuaibi AA, Khalaf FI (2011) Development and lithogenesis of the palustrine and calcrete deposits of the Dibdibba Alluvial Fan, Kuwait. J Asian Earth Sci 42:423–439. https://doi.org/10.1016/j.jseaes.2011.05.014

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the FCT (Portuguese Science and Technology Foundation) support through the UID/Multi/04349/2013 (including the post-doctoral grant of the first author in the C2TN) and the UID/GEO/04035/2013 projects. The first author also acknowledges the financial support provided by FCT with PhD grant SFRH/BD/62396/2009 and post-doctoral grant SFRH/BPD/114986/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Luísa Rodrigues.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, A.L., Dias, M.I., Rocha, F. et al. Palaeoenvironmental significance and pathways of calcrete development investigated with nuclear and related methods. J Radioanal Nucl Chem 321, 541–556 (2019). https://doi.org/10.1007/s10967-019-06591-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06591-w

Keywords

Navigation