Advertisement

From Bq cm−3 to Bq cm−2 (and conversely)—part 2: useful dataset to apply the conversion to decommissioning operations

  • Sophie BillonEmail author
  • Paul Sardini
  • Sylvain Leblond
  • Pascal Fichet
Article
  • 13 Downloads

Abstract

A large set of key parameters is provided to use in decommissioning operations, the conversion method fully described in the companion paper “From Bq cm−3 to Bq cm−2 (and conversely)—part 1: a useful conversion for autoradiography”. Maximum range RMAX and emission fraction FE are given for a large combination of radionuclides (3H, 14C, 60Co, 137Cs, 235U, 238U, 239Pu and 240Pu) and materials (plastic, concrete and steel) encountered in nuclear facilities. Geometric factor of the detector efficiency is investigated to consider the common complications related to the analysis of the contaminated facilities such as irregular surface or distance between detector and contaminated surface.

Keywords

Dismantling context Geant4 Emission fraction Alpha, beta and gamma emissions and their ranges in plastic, concrete, steel and air 

Notes

Acknowledgements

This work, included in the MAUD project, was performed within the Investments for the future program of the French Government and operated by the French National Radioactive Waste Management Agency (Andra). We would like to thank the reviewers for their constructive comments and criticisms in reviewing the paper.

Supplementary material

10967_2019_6540_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2043 kb)

References

  1. 1.
    OECD NEA (2014) R&D and Innovation Needs for Decommissioning Nuclear Facilities, Nuclear Energy Agency, report No. 7191Google Scholar
  2. 2.
    ISO 7503-2 (2016) Measurement of radioactivity –Measurement and evaluation of surface contamination—Part 2: Test method using wipe testsGoogle Scholar
  3. 3.
    L’Annunziata MF (2012) Handbook of radioactivity analysis, 3rd edn. Academic Press, CambridgeGoogle Scholar
  4. 4.
    Fichet P, Bresson F, Leskinen A, Goutelard F, Ikonen J, Siitari-Kaupi M (2012) Tritium analysis in building dismantling process using digital autoradiography. J Radioanal Nucl Chem 291:869–875CrossRefGoogle Scholar
  5. 5.
    Leskinen A, Fichet P, Siitari-Kauppi M, Goutelard F (2013) Digital autoradiography (DA) in quantification of trace level beta emitters on concrete. J Radioanal Nucl Chem 298:153–161CrossRefGoogle Scholar
  6. 6.
    Haudebourg R, Fichet P (2016) A non-destructive and on-site digital autoradiography-based tool to identify contaminating radionuclide in nuclear wastes and facilities to be dismantled. J Radioanal Nucl Chem 309:551–561Google Scholar
  7. 7.
    ISO 9698 (2010) Water quality—Determination of tritium activity concentration—liquid scintillation counting methodGoogle Scholar
  8. 8.
    Billon S, Sardini P, Leblond S, Fichet P (2019) From Bq cm−3 to Bq cm−2 (and conversely)- part 1: a useful conversion for autoradiography. J Radioanal Nucl Chem (in press) Google Scholar
  9. 9.
    ISO 7503-3 (2016) Measurement of radioactivity. Measurement and evaluation of surface contamination- Part 3: Apparatus calibrationGoogle Scholar
  10. 10.
    Eckerman KF, Sjoreen AL (2004) Radiological toolbox user’s manual. Department of Energy, United StatesCrossRefGoogle Scholar
  11. 11.
    Laboratoire National Henri Becquerel, Library for gamma and alpha emissions http://www.lnhb.fr/nuclear-data/module-lara/. Accessed 6 May 2018
  12. 12.
    Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell’Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, Gomez Cadenas JJ (2003) GEANT4—a simulation toolkit. Nucl Instrum Methods Phys Res A 506:250–303CrossRefGoogle Scholar
  13. 13.
    ISO 7503-1 (2016) Measurement of radioactivity- Measurement and evaluation of surface contamination- Part 1: General principlesGoogle Scholar
  14. 14.
    Schuler C, Butterweck G, Wernli C, Bochud F, Valley JF (2007). Calibration and Verification of Surface Contamination Meters-Procedures and Techniques. Paul Scherrer InstitutGoogle Scholar
  15. 15.
    Donnard J (2007) Étude et conception d’un imageur bêta à très haute résolution spatiale. PhD thesis of the university of Nantes, France, 204 ppGoogle Scholar
  16. 16.
    Ilic R, Durrani SA (2003) Solid state nuclear track detector (Chapter 3). In: L’Annunziata MF (ed) Handbook of radioactivity analysis, 2nd edn. Elsevier Science, Amsterdam, pp 179–237CrossRefGoogle Scholar
  17. 17.
    Nelson G, Reilly D (1991) Gamma-ray interactions with matter. Passive nondestructive analysis of nuclear materials, 27–42Google Scholar
  18. 18.
    Berger MJ, Hubbell JH (1992) Photon attenuation coefficient. No. CRC Handbook of Chemistry and Physics, 73rd Ed. https://www.nist.gov/. Accessed 24 Oct 2018
  19. 19.
    Hubbell JH (1969) Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 keV to 100 GeV. National Bureau of StandardsGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.ERM CompanyPoitiersFrance
  2. 2.Université de Poitiers, UMR 7285, CNRS, IC2MPPoitiers cedex 9France
  3. 3.Den-SEARS, CEA, Université Paris-SaclayGif Sur YvetteFrance

Personalised recommendations