Determination of uranium in environmental sample by nanosensor graphene quantum dots

  • Pradeep Kumar Dewangan
  • Fahmida KhanEmail author
  • Kamlesh Shrivas
  • Vinayak Sahu


The unique properties of graphene quantum dots (GQDs) i.e. low toxicity, excellent water solubility, low cost, high photostability, biocompatibility, and small size have attracted tremendous attention for new research prospects in the detection of metal ions. The fluorescence properties of GQDs are used for qualitative and quantitative analysis of U(VI) ion. The fluorescence of GQDs is intensively quenched by uranium. Synthesized GQDs were characterized by UV–visible spectroscopy, FTIR, Transmission electron microscopy, fluorescence spectrophotometry. Results indicate a single layer of GQDs, small size. Optimum pH is 7 for uranium detection and up to 1.5 ppb of U(VI) ion is accurately determined.


Graphene quantum dots Uranium ion Fluorescence spectroscopy Pyrolysis Glucose 



The authors are thankful to Dr. A. M. Rawani, Director, National Institute of Technology Raipur for laboratory and library facilities. One of the author Pradeep Kumar Dewangan gratefully acknowledges the JRF awarded by Council of Scientific and Industrial Research (CSIR) (Grant No. 09/1116(0001)2016-EMR-I), New Delhi.


  1. 1.
    Cappello F, Macario AJ (2019) Depleted uranium induces human carcinogenesis involving the immune and chaperoning systems: realities and working hypotheses. Med Hypotheses 124:26–30Google Scholar
  2. 2.
    Prasad M, Kumar GA, Sahoo SK, Ramola RC (2019) Health risks associated with the exposure to uranium and heavy metals through potable groundwater in the Uttarakhand state of India. J Radioanal Nucl Chem 319(1):13–21CrossRefGoogle Scholar
  3. 3.
    Tan X, Fang M, Tan L, Liu H, Ye X, Hayat T, Wang X (2018) Core–shell hierarchical C@Na2Ti3O7·9H2O nanostructures for the efficient removal of radionuclides. Environ Sci Nano 5(5):1140–1149CrossRefGoogle Scholar
  4. 4.
    Grison S, Elmhiri G, Gloaguen C, Elie C, Kereselidze D, Tack K et al (2018) Low dose of uranium induces multigenerational epigenetic effects in rat kidney. Int J Radiat Biol 94(11):975–984CrossRefGoogle Scholar
  5. 5.
    Sar SK, Diwan V, Biswas S, Singh S, Sahu M, Jindal MK, Arora A (2018) Study of uranium level in groundwater of Balod district of Chhattisgarh state, India and assessment of health risk. Hum Ecol Risk Assess Int J 24(3):691–698CrossRefGoogle Scholar
  6. 6.
    Greene AD, Kendziorski JA, Buckholz JM, Niu L, Xie C, Pinney SM, Burns KA (2019) Elevated serum chemokines are independently associated with both endometriosis and uranium exposure. Reprod Toxicol 84:26–31CrossRefGoogle Scholar
  7. 7.
    Dewar D (2019). Uranium mining: environmental and human health effects. In: Black Branch JL, Fleck D (eds) Nuclear non-proliferation in international law-volume IV. TMC Asser Press, The Hague, pp 229–235Google Scholar
  8. 8.
    Sarapultseva EI, Ustenko K, Dubrova YE (2019) The combined effects of acute irradiation and food supply on survival and fertility in Daphnia magna. J Environ Radioact 199:75–83CrossRefGoogle Scholar
  9. 9.
    Kaur G, Singh J (2019) Effects of radiation on the environment. In: Kumar V, Chaudhary B, Sharma V, Verma K (eds) Radiation effects in polymeric materials. Springer, Cham, pp 1–34Google Scholar
  10. 10.
    Sornette D, Kröger W, Wheatley S (eds) (2019) Severe accidents: singularity of nuclear disasters? In: New ways and needs for exploiting nuclear energy. Springer, Cham, pp 161–198CrossRefGoogle Scholar
  11. 11.
    Manard BT, Quarles CD, Metzger SC, Rogers KT, Ticknor B, Bostick D et al (2019) [Express] evaluation and specifications for in-line uranium separations using inductively coupled plasma optical emission spectrometry (ICP-OES) detection for trace elemental analysis. Appl SpectroscGoogle Scholar
  12. 12.
    Chandrasekaran K, Karunasagar D, Arunachalam J (2011) Dispersive liquid–liquid micro extraction of uranium (VI) from groundwater and seawater samples and determination by inductively coupled plasma–optical emission spectrometry and flow injection–inductively coupled plasma mass spectrometry. Anal Methods 3(9):2140–2147CrossRefGoogle Scholar
  13. 13.
    Abbasi SA (1989) Atomic absorption spectrometric and spectrophotometric trace analysis of uranium in environmental samples with Np-methoxyphenyl-2-furylacrylohydroxamic acid and 4-(2-pyridylazo) resorcinol. Int J Environ Anal Chem 36(3):163–172CrossRefGoogle Scholar
  14. 14.
    Brina R, Miller AG (1992) Direct detection of trace levels of uranium by laser-induced kinetic phosphorimetry. Anal Chem 64(13):1413–1418CrossRefGoogle Scholar
  15. 15.
    Dhara S, Misra NL, Aggarwal SK (2008) Determination of sulphur in uranium matrix by total reflection X-ray fluorescence spectrometry. Spectrochim Acta Part B 63(12):1395–1398CrossRefGoogle Scholar
  16. 16.
    Gholivand MB, Nassab HR, Fazeli H (2005) Cathodic adsorptive stripping voltammetric determination of uranium (VI) complexed with 2, 6-pyridinedicarboxylic acid. Talanta 65(1):62–66CrossRefGoogle Scholar
  17. 17.
    Nassab HR, Souri A, Javadian A, Amini MK (2015) A novel mercury-free stripping voltammetric sensor for uranium based on electropolymerized N-phenylanthranilic acid film electrode. Sens Actuat B Chem 215:360–367CrossRefGoogle Scholar
  18. 18.
    Gao T, Wang X, Yang LY, He H, Ba XX, Zhao J et al (2017) Red, yellow, and blue luminescence by graphene quantum dots: syntheses, mechanism, and cellular imaging. ACS Appl Mater Interfaces 9(29):24846–24856CrossRefGoogle Scholar
  19. 19.
    Li C, Yue Y (2014) Fluorescence spectroscopy of graphene quantum dots: temperature effect at different excitation wavelengths. Nanotechnology 25(43):435703CrossRefGoogle Scholar
  20. 20.
    Sk MA, Ananthanarayanan A, Huang L, Lim KH, Chen P (2014) Revealing the tunable photoluminescence properties of graphene quantum dots. J Mater Chem C 2(34):6954–6960CrossRefGoogle Scholar
  21. 21.
    Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y et al (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50(12):4738–4743CrossRefGoogle Scholar
  22. 22.
    Sun H, Wu L, Gao N, Ren J, Qu X (2013) Improvement of photoluminescence of graphene quantum dots with a biocompatible photochemical reduction pathway and its bioimaging application. ACS Appl Mater Interfaces 5(3):1174–1179CrossRefGoogle Scholar
  23. 23.
    Xi Y, Zhao M, Wang X, Li S, He X, Wang Z, Bu H (2011) Honeycomb-patterned quantum dots beyond graphene. J Phys Chem C 115(36):17743–17749CrossRefGoogle Scholar
  24. 24.
    Kalita H, Harikrishnan V, Aslam M (2014) Field effect transport properties of chemically treated graphene quantum dots. Int J Nanotechnol 11(1–234):75–84CrossRefGoogle Scholar
  25. 25.
    Wu Y, Wadia C, Ma W, Sadtler B, Alivisatos AP (2008) Synthesis and photovoltaic application of copper (I) sulfide nanocrystals. Nano Lett 8(8):2551–2555CrossRefGoogle Scholar
  26. 26.
    Gupta V, Chaudhary N, Srivastava R, Sharma GD, Bhardwaj R, Chand S (2011) Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc 133(26):9960–9963CrossRefGoogle Scholar
  27. 27.
    Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76CrossRefGoogle Scholar
  28. 28.
    Bae PK, Kim KN, Lee SJ, Chang HJ, Lee CK, Park JK (2009) The modification of quantum dot probes used for the targeted imaging of his-tagged fusion proteins. Biomaterials 30(5):836–842CrossRefGoogle Scholar
  29. 29.
    Chen N, He Y, Su Y, Li X, Huang Q, Wang H et al (2012) The cytotoxicity of cadmium-based quantum dots. Biomaterials 33(5):1238–1244CrossRefGoogle Scholar
  30. 30.
    Pauli J, Grabolle M, Brehm R, Spieles M, Hamann FM, Wenzel M et al (2011) Suitable labels for molecular imaging–influence of dye structure and hydrophilicity on the spectroscopic properties of IgG conjugates. Bioconjug Chem 22(7):1298–1308CrossRefGoogle Scholar
  31. 31.
    Ye L, Yong KT, Liu L, Roy I, Hu R, Zhu J et al (2012) A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat Nanotechnol 7(7):453CrossRefGoogle Scholar
  32. 32.
    Wang C, Gao X, Su X (2010) In vitro and in vivo imaging with quantum dots. Anal Bioanal Chem 397(4):1397–1415CrossRefGoogle Scholar
  33. 33.
    Tiwari DK, Jin T, Behari J (2011) Bio-distribution and toxicity assessment of intravenously injected anti-HER2 antibody conjugated CdSe/ZnS quantum dots in Wistar rats. Int J Nanomed 6:463Google Scholar
  34. 34.
    Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736CrossRefGoogle Scholar
  35. 35.
    Ren X, Wu Q, Xu H, Shao D, Tan X, Shi W et al (2016) New insight into GO, cadmium (II), phosphate interaction and its role in GO colloidal behavior. Environ Sci Technol 50(17):9361–9369CrossRefGoogle Scholar
  36. 36.
    Wang S, Cole IS, Li Q (2016) The toxicity of graphene quantum dots. RSC Adv 6(92):89867–89878CrossRefGoogle Scholar
  37. 37.
    Zhang Y, Gao H, Niu J, Liu B (2014) Facile synthesis and photoluminescence of graphene oxide quantum dots and their reduction products. New J Chem 38(10):4970–4974CrossRefGoogle Scholar
  38. 38.
    Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5(10):4015–4039CrossRefGoogle Scholar
  39. 39.
    Yan X, Cui X, Li LS (2010) Synthesis of large, stable colloidal graphene quantum dots with tunable size. J Am Chem Soc 132(17):5944–5945CrossRefGoogle Scholar
  40. 40.
    Eda G, Lin YY, Mattevi C, Yamaguchi H, Chen HA, Chen IS et al (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22(4):505–509CrossRefGoogle Scholar
  41. 41.
    Shehab M, Ebrahim S, Soliman M (2017) Graphene quantum dots prepared from glucose as optical sensor for glucose. J Lumin 184:110–116CrossRefGoogle Scholar
  42. 42.
    Tan L, Wang X, Tan X, Mei H, Chen C, Hayat T et al (2017) Bonding properties of humic acid with attapulgite and its influence on U (VI) sorption. Chem Geol 464:91–100CrossRefGoogle Scholar
  43. 43.
    Zhang L, Zhang ZY, Liang RP, Li YH, Qiu JD (2014) Boron-doped graphene quantum dots for selective glucose sensing based on the “abnormal” aggregation-induced photoluminescence enhancement. Anal Chem 86(9):4423–4430CrossRefGoogle Scholar
  44. 44.
    Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L et al (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12(2):844–849CrossRefGoogle Scholar
  45. 45.
    Wang Z, Lu Y, Yuan H, Ren Z, Xu C, Chen J (2015) Microplasma-assisted rapid synthesis of luminescent nitrogen-doped carbon dots and their application in pH sensing and uranium detection. Nanoscale 7(48):20743–20748CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Pradeep Kumar Dewangan
    • 1
  • Fahmida Khan
    • 1
    Email author
  • Kamlesh Shrivas
    • 2
  • Vinayak Sahu
    • 1
  1. 1.Department of ChemistryNational Institute of Technology RaipurRaipurIndia
  2. 2.School of Studies in ChemistryPt. Ravishankar Shukla UniversityRaipurIndia

Personalised recommendations