Advertisement

93Nb(n,2n)92mNb, 93Nb(n,α)90mY and 92Mo(n,p)92mNb reactions at 14.78 MeV and covariance analysis

  • Imran Pasha
  • Rudraswamy Basavanna
  • Santhi Sheela Yerranguntla
  • Saraswatula Venkata Suryanarayana
  • Meghna Karkera
  • Haladhara NaikEmail author
  • Manjunatha Prasad Karantha
  • Laxman Singh Danu
  • Saroj Bishnoi
  • Tarun Patel
  • Rajeev Kumar
Article
  • 36 Downloads

Abstract

The cross sections for the 93Nb(n,2n)92mNb, 93Nb(n,α)90mY and the 92Mo(n,p)92mNb reactions have been measured with respect to the 197Au(n,2n)196Au monitor reaction at the incident neutron energy of 14.78 ± 0.19 MeV by employing methods of activation and off-line γ-ray spectrometry. The covariance analysis was carried out by taking into consideration of partial uncertainties in different attributes and correlation among the attributes. The present data have been compared with the literature data available in EXFOR, evaluated data of different libraries and theoretical values based on TALYS-1.8 code.

Keywords

93Nb(n,2n)92mNb, 93Nb(n,α)90mY and 92Mo(n,p)92mNb reactions Cross sections 3H(d,n)4He reaction neutron Activation and off line γ-ray spectrometry Covariance analysis TALYS-1.8 

Notes

Acknowledgements

The research was financially assisted by Department of atomic energy & Board of research in nuclear sciences (DAE-BRNS) through major research project (Sanction No. 36(6)/14/92/2014-BRNS/2727) and Directorate of Minority, Govt. of Karnataka. We would like to thank the employees of Purnima neutron generator for their kind support to carryout neutron irradiation experiment. The authors would like to thank S. Ganesan, HBNI, BARC, Mumbai for the valuable suggestions and Tim Vidmar, Belgian Nuclear Research Center (SCK CEN), Belgium for supplied the EFFTRAN software.

References

  1. 1.
    Wenrong Z, Hanlin L, Weixiang Y, Xialin Y (1989) Compilation of measurement and evaluations of nuclear activation cross section for nuclear data applications. INDC (CPR)-16Google Scholar
  2. 2.
    Mannhart W, Schmidt D (2007) Measurement of neutron activation cross sections in the energy range from 8 MeV to 15 MeV. Report of the Physikalisch-Technischen Bundesanstalt, BraunschweigGoogle Scholar
  3. 3.
    Kiraly B, Csikai J, Doczi R (2001) Validation of neutron data libraries by differential and integral cross sections. JAERI 6:283–288Google Scholar
  4. 4.
    Filatenkov AA, Chuvaev SV, Aksenov VN, Yakovlev VA, Malyshenkov AV, Vasil’ev SK, Avrigeanu M, Avrigeanu V, Smith DL, Ikeda Y, Wallner A, Kutschera W, Priller A, Steier P, Vonach H, Mertens G, Rochow W (1999) Systematic measurement of activation cross sections at neutron energies from 13.1 to 14.9 MeV. Report Khlopin Radiev Inst, Leningrad Reports, RussiaGoogle Scholar
  5. 5.
    Ichihara A (2016) Calculation of cross section for meta-stable state production in the (n, γ), (n, n’), (n,2n) and (n,3n) reactions of 93Nb. J Nucl Sci Technol 53:2049–2055CrossRefGoogle Scholar
  6. 6.
    Ikeda Y, Konno C, Oyama Y, Kosako K, Oishi K, Maekawa H (1993) Absolute measurement of activation cross sections of 27Al(n, p)27Mg, 27Al(n, a)24Na, 56Fe(n, p)56Mn,90Zr(n,2n)89m+gZr and 93Nb(n,2n)92mNb at energy range of 13.3–14.9 MeV. J Nucl Sci Technol 30(9):870–880CrossRefGoogle Scholar
  7. 7.
    Goldberg DC, Dicker G, Worcester SA (1972) Niobium and niobium alloys in nuclear power. Nucl Eng Des 22:95–123CrossRefGoogle Scholar
  8. 8.
    Molla NI, Miah RU, Rahman M, Akhter A (1991) Excitation functions of some (n, p), (n,2n) and(n, α) reactions on nickel, zirconium and niobium isotopes in the energy range 13.63–14.83 MeV. Nucl Data Sci Technol Juelich 91:355Google Scholar
  9. 9.
    Santry DC, Werner RD (1990) Cross sections for the 93Nb(n,2n)92mNb reaction. Can J Phys 68:582CrossRefGoogle Scholar
  10. 10.
    Hanlin L, Wenrong Z, Weixiang Y, Xiaogang H (1989) Neutron activation cross section measurements and evaluations in CIAE. INDC(CPR)-16Google Scholar
  11. 11.
    Wolfle R, Mannan A, Qaim SM, Liskien H, Widera R (1988) Excitation functions of 93Nb(n,2n)92mNb, 93Nb(n, α)90 m, gY, 139La(n, α)136Cs and 181Ta(n, p)181Hf reactions in the energy range of 12.5–19.6 MeV. Appl Radiat Isotopes 39:407–412CrossRefGoogle Scholar
  12. 12.
    Ikeda Y, Konno C, Oishi K, Nakamura T, Miyade H, Kawade K, Yamamoto H, Katoh T (1988) Activation cross section measurement for fusion reactor structural materials at neutron energy from 13.3 to 15.0 MeV using FNS facility. Report JAERI 1312Google Scholar
  13. 13.
    Iguchi T, Nakata K, Nakazawa M (1987) Improvement of accuracy of Zr/Nb activation-rate ratio method for D-T neutron source determination. J Nucl Sci Technol 24(12):1076–1079CrossRefGoogle Scholar
  14. 14.
    Ikeda Y, Miyade H, Kawade K, Yamamoto H (1984) Measurement of high threshold reaction cross sections for 13.5 to 15 MeV. W, Ikeda 8411Google Scholar
  15. 15.
    Chiadli A, Paic G (1982) Cross-section of (n,2n) reaction on 93Nb and 90Zr. Annual report of Univ. Mohammed, Rabat, Morocco 5:13Google Scholar
  16. 16.
    Bhika M, Saxena A, Roy BJ, Choudhury RK, Kailas S, Ganesan S (2017) Measurement of 67Zn(n, p)67Cu, 92Mo(n, p)92mNb and 98Mo(n, γ)99Mo reaction cross sections at incident neutron energies of En = 1.6 and 3.7 MeV. Nucl Sci Eng 163:175–182CrossRefGoogle Scholar
  17. 17.
    Semkova V, Nolte R (2014) Measurement of neutron activation cross sections on Mo isotopes in the energy range from 7 MeV to 15 MeV. EPJ Web 66:03077CrossRefGoogle Scholar
  18. 18.
    Wenrong Z, Hanlin L, Weixiang Y, Xiaogang H, Xiaolong H (1998) Measurement of cross section for 92Mo(n,p)92mNb reaction and deduction of low energy neutron. INDC(CPR)-047/LGoogle Scholar
  19. 19.
    Molla NI, Miah RU, Sasunia S, Houssain SM, Rahman M (1997) Excitation functions of (n, p), (n, α) and (n,2n) processes on some isotopes of Cl, Cr, Ge, Mo and Ce in the energy range 13.57–14.71 MeV. TRIEST C 97 1:517Google Scholar
  20. 20.
    Kong X, Wang Y, Yuan J, Yang J (1996) The cross section measurements for the 92Mo(n,p)92mNb, 98Mo(n,p)98mNb and 94Mo(n,2n)93mMo reactions. J Lanzhou Univ. ISSN: 0455-2059Google Scholar
  21. 21.
    Osman KT, Habbani FI (1996) Measurement and study of (n,p) reaction cross sections for Cr, Ti, Ni, Co, Zr and Mo isotopes using 14.7 MeV neutrons. INDC(SUD)-001Google Scholar
  22. 22.
    Kimura I, Kobayashi K (1990) Calibration fission and fusion neutron fields at the Kyoto University reactor. Nucl Sci Eng 106:332–344CrossRefGoogle Scholar
  23. 23.
    Marcinkowski A, Stankiewicz K, Gauska U, Herman M (1986) Cross sections of fast neutron induced reactions on Molybdenum isotopes. Z Phys A Atomic Nuclei 323:91–96CrossRefGoogle Scholar
  24. 24.
    Fessler A, Plompen AJM, Smith DL, Meadows JW, Ikeda Y (2000) Neutron activation cross section measurements from 16 to 20 MeV for isotopes of F, Na, Ma, Al, Si, P, Cl, Ti, V, Mn, Fe, Nb, Sn and Ba. Nucl Sci Eng 134:171–200CrossRefGoogle Scholar
  25. 25.
    Garlea I, Miron-Garlea C, Rosh HN, Fodor G, Raduch V (1992) Integral neutron cross sections measured around 14 MeV. J Revue Roumaine de Phys 37:19Google Scholar
  26. 26.
    Amemiya S, Ishibashi K, Katoh T (1982) Neutron activation cross section of Molybdenum isotopes at 14.8 MeV. J Nucl Sci Technol 19(10):781–788CrossRefGoogle Scholar
  27. 27.
    Quim SM, Woelfle R, Stoecklin G (1971) Activation cross sections of fast neutron induced nuclear reactions: precision measurements and systematics. Chemical Nuclear Data, CanterburyGoogle Scholar
  28. 28.
    Zolotarev KI (2010) Evaluation of cross-section data from threshold to 40 MeV for some neutron reactions important for fusion dosimetry applications. INDC (NDS)-0584Google Scholar
  29. 29.
    Zolotarev KI, Zolotarev PK (2013) Evaluation of some (n,n’), (n,γ), (n,p), (n,2n) and (n,3n) reaction excitation functions for fission and fusion reactor dosimetry applications. INDC (NDS)-0657Google Scholar
  30. 30.
    Csikai J (1982) Study of excitation function around 14 MeV neutron energy. In: Proceedings of the International Conference Antwerp, J Nucl Sci Technol, pp 414–417.  https://doi.org/10.1007/978-94-009-7099-1
  31. 31.
    Filatenkov AA, Chuvaev SV, Aksenov VN, Jakovlev VA (1997) Systematic measurement of activation cross sections at neutron energies from 13.4 to 14.9 MeV. INDC (CCP)-402Google Scholar
  32. 32.
    Filatenkov AA (2016) Neutron activation cross sections measured at KRI in neutron energy region 13.4-14.9 MeV. INDC (CCP)-0406Google Scholar
  33. 33.
    IAEA-EXFOR Database available at http://www-nds.iaea.org/exfor
  34. 34.
    Koning AJ, Hilaire S, Goriely S (2015) TALYS-1.8, A Nuclear Reaction Program (NRG-1755 ZG Petten, The Netherlands). http://www.talys.eu/download-talys/
  35. 35.
    Sinha A, Roy T, Yogesh K, Ray N, Shukla M, Patel T, Bajpai S, Sarkar PS, Bishnoi S (2015) Experimental subcritical facility driven by D-D/D-T neutron generator at BARC, India. Nucl Instrum Methods Phys Res B 350:66–70CrossRefGoogle Scholar
  36. 36.
    Kicka L (2016) Characterization of neutron fields around an intense neutron generator. Thesis. https://ir.library.dc-uoit.ca/handle/10155/758
  37. 37.
    NuDat 2.7 (2016) National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov/nudat2
  38. 38.
    Martin MJ (2013) Nuclear data sheets for A = 152*. Nucl Data Sheets 114:1497–1847CrossRefGoogle Scholar
  39. 39.
    Vidmar T (2005) EFFTRAN-A Monto Carlo efficiency transfer code for gamma-ray spectrometry. Nucl Instrum Methods Phys Res A 550:603–608CrossRefGoogle Scholar
  40. 40.
    Geraldo LP, Smith DL (1990) Covariance analysis and fitting of germanium gamma-ray detector efficiency calibration data. Nucl Instrum Methods Phys Res A 290:499–508CrossRefGoogle Scholar
  41. 41.
    Pasha I, Rudraswamy B, Radha E, Sathiamoorthy V (2018) Efficiency of high-purity germanium detector at characteristic gamma energies of 198Au and 58Co and covariance analysis. Radiat Prot Environ 41:110–114CrossRefGoogle Scholar
  42. 42.
    Geraldo LP, Smith DL (1989) least square methods and covariance matrix applied to the relative efficiency calibration of a Ge(Li) detector. Inst de Pesquisas Energeticas e Nuleares 243:1–16Google Scholar
  43. 43.
    Millsap DW, Landsberger S (2015) Self-attenuation as a function of gamma ray energy in naturally occurring radioactive material in the oil and gas industry. Appl Radiat Isotopes 97:21–433CrossRefGoogle Scholar
  44. 44.
    Nowotny R (1998) XMuDat: photon attenuation data on PC. IAEA Report IAEA-NDS 195. http://www-nds.iaea.org/publications/iaea-nds
  45. 45.
    Zsolnay EM, Capote Noy R, Nolthenius HJ, Trkov A (2014) International Reactor Dosimetry and Fusion File (IRDF 1.05). http://www-nds.iaea.org/IRDFF/
  46. 46.
    Yerraguntla SS, Naik H, Karantha MP, Ganesan S, Suryanarayana SV, Badwar S (2017) Measurement of 59Co(n, γ)60Co reaction cross sections at the effective neutron energies of 11.98 and 15.75 MeV. J Radioanal Nucl Chem 314(1):457–465CrossRefGoogle Scholar
  47. 47.
    Santhi Sheela Y, Naik H, Prasad KM, Ganesan S, Suryanarayana S V (2017) Detailed data sets related to covariance analysis of the measurement of cross section of 59Co(n,γ)60Co reaction relative to the cross section of 115In(n,γ)116mIn. Internal Report, No. MU/STASTICS/DAE–BRNS/2017/3, 31 May 2017.  https://doi.org/10.13140/rg.2.2.26729.49764
  48. 48.
    An International collaboration of NEA data bank participating countries (2017) The Joint Evaluated Fission and Fusion File (JEFF). http://www.oecd-nea.org
  49. 49.
    Zabrodskaya SV, Ignatyuk AV, Koscheev VN (2007) VANT, Nuclear constants. ROSFOND-2010, pp 1–2Google Scholar
  50. 50.
    Zsolnay EM, Capote R, Nolthenius HK, Trkov A (2012) Technical report. INDC(NDS)-0616, IAEA, ViennaGoogle Scholar
  51. 51.
    Shibata K, Iwamoto N, Kunieda S, Minato F, Iwamoto O (2016) Activation cross-section file for decommissioning of LWRs. JAEA, pp 47–52Google Scholar
  52. 52.
    Sublet J-Ch, Packer LW, Kopecky J, Forrest RA, Koning AJ, Rochman DA (2010) The European activation file: EAF-2010 neutron-induced cross section. CCFE-R 10:05Google Scholar
  53. 53.
    Blokhin AI, Gai EV, Ignatyuk AV, Koba II, Manokin VN (2016) New version of neutron evaluation data library BROND-3.1. Problems of atomic science and technology. Ser Nucl Reactor Constants 2:2–5Google Scholar
  54. 54.
    Sublet J-Ch, Koning AJ, Forrest RA, Kopecky J (2004) The JEFF-3.1/A. In: Proceedings of the conference on nuclear data for science and technologyGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Imran Pasha
    • 1
  • Rudraswamy Basavanna
    • 1
  • Santhi Sheela Yerranguntla
    • 2
  • Saraswatula Venkata Suryanarayana
    • 3
  • Meghna Karkera
    • 2
  • Haladhara Naik
    • 4
    Email author
  • Manjunatha Prasad Karantha
    • 2
    • 5
  • Laxman Singh Danu
    • 3
  • Saroj Bishnoi
    • 6
  • Tarun Patel
    • 6
  • Rajeev Kumar
    • 7
  1. 1.Department of PhysicsBangalore UniversityBengaluruIndia
  2. 2.Department of StatisticsManipal Academy of Higher EducationManipalIndia
  3. 3.Nuclear Physics DivisionBhabha Atomic Research CenterMumbaiIndia
  4. 4.Radio Chemistry DivisionBhabha Atomic Research CenterMumbaiIndia
  5. 5.Center for Advanced Research in Applied Mathematics and StatisticsManipal Academy of Higher EducationManipalIndia
  6. 6.Neutron and X-ray Physics DivisionBhabha Atomic Research CenterMumbaiIndia
  7. 7.Reactor Physics Design DivisionBhabha Atomic Research CenterMumbaiIndia

Personalised recommendations