Influence of absorbed dose and temperature on physical properties of bis(2-ethylhexyl) diglycolamic acid (HDEHDGA) in n-dodecane

  • Jammu Ravi
  • Satyabrata Mishra
  • Remya Murali
  • Elizabeth Augustine
  • N. K. PandeyEmail author


N,N-di-2-Ethylhexyl diglycolamic acid (HDEHDGA) in n-dodecane is being emerged as a promising solvent for the separations at the back-end of nuclear fuel cycle. Present paper deals with the evaluation of its density, viscosity and inter facial tension, and their dependency on absorbed dose, temperature and composition. The experimental data was used to calculate apparent molar volume, excess molar volume, viscosity deviation, activation energy for viscous flow, enthalpy and entropy changes of activation. Redlich–Kister type equation was solved for these properties, the coefficients of third degree polynomial that fitted with the experimental data, and their dependency on temperature and absorbed dose was studied.


Reprocessing Actinide Radiation stability Density Viscosity Apparent molar volume 

List of symbols


Viscosity of pure liquid (mPa s)


Constant in Andrade’s relation


Activation energy for viscous flow (kJ mol−1)


Gas constant (J mol−1 K−1)


Absolute temperature (K)


Free energy of activation of a liquid phase


Planck’s constant


Universal gas constant


Avogadro’s number


Molar volume of mixture


Mole fraction of component in the solution


Molecular mass of component


Enthalpy of activation


Entropy of activation


Apparent molar volume


Excess molar volume


Viscosity deviations


Molality of component


Density of mixture


Density of pure component

\( V_{\phi }^{\infty } \)

Partial molar volume at infinite dilution (standard partial molar volume)




Viscosity deviation


Viscosity of the mixture


Excess molar volume (VE) or viscosity deviations (∆η)


Degree of polynomial Redlich–Kister equation


Parametric coefficients of property q


Absorbed dose dependent parametric coefficients


Temperature dependent parametric coefficients


Standard deviation





Component HDEHDGA


Component n-dodecane



Authors would like to thank Dr. K. A. Venkatesan of Fuel Chemistry Division, IGCAR for allowing his lab facilities during the synthesis of HDEHDGA.

Supplementary material

10967_2019_6499_MOESM1_ESM.docx (34 kb)
Supplementary material 1 (DOCX 33 kb)


  1. 1.
    David S (2005) Future scenarios of fission based reactors. Nucl Phys A 751:429–441CrossRefGoogle Scholar
  2. 2.
    Mathur JN, Murali MS, Nash KL (2001) Actinide partitioning—a review. Solv Extr Ion Exch 19:357–390CrossRefGoogle Scholar
  3. 3.
    Ansari SA, Pathak PN, Mohapatra PK, Manchanda VK (2012) Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem Rev 112:1751–1772CrossRefGoogle Scholar
  4. 4.
    Ravi J, Venkatesan KA, Antony MP, Srinivasan TG, Vasudeva Rao PR (2013) Tuning the diglycolamides for modifier-free minor actinide partitioning. J Radioanal Nucl Chem 295:1283–1292CrossRefGoogle Scholar
  5. 5.
    Ravi J, Venkatesan KA, Antony MP, Srinivasan TG, Vasudeva Rao PR (2014) New unsymmetrical digycolamide ligands for trivalent actinide separation. Radiochim Acta 102:609–617Google Scholar
  6. 6.
    Suresh A, Sreenivasulu B, Jayalakshmi S, Subramaniam S, Sabharwal KN, Sivaraman N, Nagarajan K, Srinivasan TG, Vasudeva Rao PR (2015) Mixer-settler runs for the evaluation of tri-iso-amyl phosphate (TiAP) as an alternate extractant to tri-n-butyl phosphate (TBP) for reprocessing applications. Radiochim Acta 103:101–108CrossRefGoogle Scholar
  7. 7.
    Condamines N, Musikas C (1992) The extraction by N,N-dialkylamides II: extraction of actinide cations. Solv Extr Ion Exch 10:69–100CrossRefGoogle Scholar
  8. 8.
    Zhang Y, Yang S, Yuan X, Zhao Y, Tian G (2017) Separating lanthanides and actinides from nitric acid solutions by using N,N-di(2-ethylhexyl)-diglycolamic acid (HDEHDGA). Chem Commun 53:6421–6423CrossRefGoogle Scholar
  9. 9.
    Ravi J, Venkatesan KA, Antony MP, Srinivasan TG, Vasudeva Rao PR (2014) Single-cycle method for partitioning of trivalent actinides using completely incinerable reagents from nitric acid medium. Radiochim Acta 102:599–607Google Scholar
  10. 10.
    Nayak PK, Kumaresan R, Chaurasia SK, Venkatesan KA, Subramanian GGS, Prathibha T, Syamala KV, Robert Selvan B, Rajeswari S, Antony MP, Vasudeva Rao PR, Bhanage BM (2015) Studies on the feasibility of using completely incinerable reagents for the single-cycle separation of americium(III) from simulated high-level liquid waste. Radiochim Acta 103:265–275Google Scholar
  11. 11.
    Nilson M, Nash KL (2007) A review of the development and operational characteristics of the TALSPEAK process. Solv Extr Ion Exch 25:665–701CrossRefGoogle Scholar
  12. 12.
    Suneesh AS, Ravi J, Venkatesan KA, Antony MP, Srinivasan TG, Vasudeva Rao PR (2010) Lanthanide-actinide separation by bis-2-ethylhexylphosphoric acid from citric acid-nitric acid medium. J Radioanal Nucl Chem 285:653–658CrossRefGoogle Scholar
  13. 13.
    Suneesh AS, Venkatesan KA, Syamala KV, Antony MP, Vasudeva Rao PR (2012) Mutual separation of americium(III) and europium(III) using glycolamic acid and thioglycolamic acid. Radiochim Acta 100:425–430CrossRefGoogle Scholar
  14. 14.
    Suneesh AS, Kumaresan R, Rajeswari S, Nayak PK, Syamala KV, Venkatesan KA, Antony MP, Vasudeva Rao PR (2013) Development and demonstration of americium (III)-europium (III) separation using diglycolamic acid. Sep Sci Technol 48:1998–2006CrossRefGoogle Scholar
  15. 15.
    Singh ML, Tripathi SC, Lokhande M, Gandhi PM, Gaikar VG (2014) Density, viscosity, and interfacial tension of binary mixture of tri-iso-amyl phosphate (TiAP) and n-dodecane: effect of composition and gamma absorbed dose. J Chem Eng Data 59:1130–1139CrossRefGoogle Scholar
  16. 16.
    Rajeswari S, Antony MP, Vasudeva Rao PR (2015) Evaluation of hydrodynamic suitability of N,N-didodecyl-N′,N′-di-octyl diglycolamide: a potential candidate for minor actinide partitioning. J Radioanal Nucl Chem 306:407–415CrossRefGoogle Scholar
  17. 17.
    Salhi H, Dallel M, Trabelsi Z, Alzamil NO, Alkhaldi MA, Ouerfelli N (2015) Viscosity Arrhenius activation energy and derived partial molar properties in methanol + N,N-dimethylacetamide binary mixtures at temperatures from 303.15 K to 318.15 K. Phys Chem Liq 53:117–137CrossRefGoogle Scholar
  18. 18.
    Saleh MA, Akhtar S, Ahmed MS, Uddin MH (2005) Density, excess molar volume, viscosity and thermodynamic activation of viscous flow of water + ethylenecarbonate. Phys Chem Liq 43:367–377CrossRefGoogle Scholar
  19. 19.
    Hamidi N (2013) On the total, apparent partial molar, partial molar, apparent partial specific and partial specific volume of the binary systems. Phys Chem Liq 51:317–337CrossRefGoogle Scholar
  20. 20.
    Ouerfelli N, Barhoumi Z, Besbes R, Amdouni N (2011) The reduced Redlich–Kister excess molar Gibbs energy of activation of viscous flow and derived properties in 1,4-dioxane + water binary mixtures from 293.15 to 309.15 K. Phys Chem Liq 49:777–800CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Reprocessing GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations