Advertisement

Hot fusion of fission fragments for the synthesis of doubly magic nucleus \({}_{126}^{310} X^{184}\)

  • Dalip Singh VermaEmail author
  • Kushmakshi
Article
  • 15 Downloads

Abstract

The suitable fission fragments have been predicted to synthesize a doubly magic superheavy element \({}_{126}^{310} X^{184}\) in the fusion of the fission fragments. This has been done within the framework of fragmentation theory which states that the fragment combinations at/near the minima of various η-regions of the fragmentation potentials are more probable to produce a cool compound nucleus than the combinations away from it. The fragmentation potentials have been calculated for the hot and cold optimized orientations. The binding energies/mass excess used in the fragmentation potentials have been calculated by using the semi-empirical mass formula of Davidson et al. and the bulk and asymmetry constants of it have been readjusted to reproduce the ground state mass excess of AME2016 and FRDM (2012) data. The suitability of the fission fragments at and around various minima of the fragmentation potentials is tested further by comparing the formation yields and the fission barriers.

Keywords

Superheavy elements Shell closures Fragmentation potential Cold-valleys Fission barriers 

Notes

References

  1. 1.
    Zagrebaev VI, Karpov AV, Greiner W (2015) Synthesis of superheavy nuclei: obstacles and opportunities. EPJ Web Conf 86(00066):1–6Google Scholar
  2. 2.
    Oganessian Y (2007) Heaviest nuclei from 48Ca-induced reactions. J Phys G: Nucl Part Phys 34:165–242CrossRefGoogle Scholar
  3. 3.
    Düllmann CE (2016) On the search for elements beyond Z = 118. An outlook based on lessons from the heaviest known elements. EPJ Web of Conf 131:08004:1–08004:9CrossRefGoogle Scholar
  4. 4.
    Gupta RK, Balasubramaniam M, Rajesh K, Narinder S, Monika M, Greiner W (2005) Optimum orientations of deformed nuclei for cold synthesis of superheavy elements and the role of higher multipole deformations. J Phys G: Nucl Part Phys 31:631–644CrossRefGoogle Scholar
  5. 5.
    Săndulescu A, Gupta RK, Scheid W, Greiner W (1976) Synthesis of new elements within the fragmentation theory: application to Z = 104 and 106 elements. Phys Lett B 60(3):225–228CrossRefGoogle Scholar
  6. 6.
    Gupta RK, Balasubramaniam M, Münzenberg G, Greiner W, Scheid W (2001) Cold 86Kr valley in superheavy Z = 104–120 nuclei. J Phys G: Nucl Part Phys 27:867–881CrossRefGoogle Scholar
  7. 7.
    Davidson NJ, Hsiao SS, Markram J, Miller HG, Tzeng Y (1994) A semi-empirical determination of the properties of nuclear matter. Nucl Phys A 570:c(61-68)CrossRefGoogle Scholar
  8. 8.
    Seeger PA (1961) Semiempirical Atomic mass law. Nucl Phys 25:1–135CrossRefGoogle Scholar
  9. 9.
    Wang M, Audi G, Kondev FG, Huang WJ, Naimi S, Xu X (2017) The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin Phys C 41(3):030003(1-442)CrossRefGoogle Scholar
  10. 10.
    Möller P, Sierk AJ, Ichikawa T, Sagawa H (2016) Nuclear ground-state masses and deformations: FRDM(2012). At Data Nucl Data Tables 109:1–204CrossRefGoogle Scholar
  11. 11.
    Balasubramaniam M, Kumar R, Gupta RK, Beck C, Scheid W (2003) Emission of intermediate mass fragments from hot 116Ba* formed in low-energy 58Ni + 58Ni reaction. J Phys G: Nucl Part Phys 29:2703–2719CrossRefGoogle Scholar
  12. 12.
    BirBikram S, Sharma MK, Gupta RK (2008) Decay of 246Bk* formed in similar entrance channel reactions of 11B + 235U and 14N + 232Th at low energies using the dynamical cluster-decay model. Phys Rev C 77:054613(1-8)Google Scholar
  13. 13.
    Myers WD, Swiatecki WJ (1966) Nuclear masses and deformations. Nucl Phys 81:1–60CrossRefGoogle Scholar
  14. 14.
    Möller P, Nix JR (1994) Stability of heavy and superheavy elements. J Phys G: Nucl Part Phys 20:1681–1747CrossRefGoogle Scholar
  15. 15.
    Rutz K, Bender M, Bürvenich T, Schilling T, Reinhard P-G, Maruhn JA, Greiner W (1997) Superheavy nuclei in self-consistent nuclear calculations. Phys Rev C 56:238–243CrossRefGoogle Scholar
  16. 16.
    Kruppa AT, Bender M, Nazarewicz W, Reinhard P-G, Vertse T, Ćwiok S (2000) Shell corrections of superheavy nuclei in self-consistent calculations. Phys Rev C 61:034313(1-13)CrossRefGoogle Scholar
  17. 17.
    Berger J-F, Bitaud L, Dechargé J, Girod M, Dietrich K (2001) Superheavy, hyperheavy and bubble nuclei. Nucl Phys A 685:c(1-16)CrossRefGoogle Scholar
  18. 18.
    Dechargé J, Berger J-F, Girod M, Dietrich K (2003) Bubbles and semi-bubbles as a new kind of superheavy nuclei. Nucl Phys A 716:55–86CrossRefGoogle Scholar
  19. 19.
    Bender M, Nazarewicz W, Reinhard P-G (2001) Shell stabilization of super- and hyperheavy nuclei without magic gaps. Phys Lett B 515:42–48CrossRefGoogle Scholar
  20. 20.
    Sandhu K, Sharma MK (2013) Stability aspect of superheavy nucleus 296116* formed in 48Ca + 248Cm reaction. AIP Conf Proc 1524:123–126CrossRefGoogle Scholar
  21. 21.
    Błocki J, Randrup J, Światecki WJ, Tsang CF (1977) Proximity forces. Ann Phys 105:427–462CrossRefGoogle Scholar
  22. 22.
    Wong CY (1973) Interaction barriers in charged-particle nuclear reactions. Phys Rev Lett 31:766–769CrossRefGoogle Scholar
  23. 23.
    Malhotra N, Gupta RK (1985) Proximity potential for deformed, oriented collisions and its application to 238U + 238U. Phys Rev C 31:1179–1183CrossRefGoogle Scholar
  24. 24.
    Baltz AJ, Bayman BF (1982) Proximity potential for heavy ion reactions on deformed nuclei. Phys Rev C 26:1969–1983CrossRefGoogle Scholar
  25. 25.
    Kowal M, Jachimowicz P, Sobiczewski A (2010) Fission barriers for even-even superheavy nuclei. Phys Rev C 82:014303(1-10)Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Physics and Astronomical ScienceCentral University of Himachal PradeshDharamshala, District KangraIndia

Personalised recommendations