Recycling of isotopically modified molybdenum from irradiated CerMet nuclear fuel: part 2—caesium separation from concentrated molybdate solution

  • Kamil Vavřinec MarešEmail author
  • Ferdinand Šebesta
  • Jan John


As described in a previous paper (Mareš and John in J Radioanal Nucl Chem, 2019., isotopically manipulated molybdenum used as an inert matrix in advanced types of nuclear fuels should be recycled. This study aimed to demonstrate the possibility of removing caesium from concentrated molybdenum solutions resulting from the proposed molybdenum reprocessing procedure. The commercially available DOWEX 50W, Amberjet 1000H, Crystalline Ionsiv IE910 and IE 911 exchangers as well as four in-house prepared hexacyanoferrates (Nickel, Potassium-nickel, Potassium-cooper and Potassium-cobalt) were tested in batch and column experiments. The results revealed that KNiFC-PAN resin is the most promising ion exchanger for caesium separation from a slightly alkaline (pH 9.1) ammonium molybdate solution.


CerMet fuel Molybdenum recycling Caesium Ion-exchange Hexacyanoferrates Polyacrylonitrile PAN 



This study was supported by the ASGARD Project supported by EU within the 7th Framework Programme (EC-GA No. 295825), the Grant Agency of the Czech Technical University in Prague (Grants No. SGS12/199/OHK4/3T/14 and SGS15/216/OHK4/3T/14), and by the Centre for advanced applied science, Project Number CZ.02.1.01/0.0/0.0/16_019/0000778, supported by the Ministry of Education, Youth and Sports of the Czech Republic.


  1. 1.
    Mareš KV, John J (2019) Recycling of isotopically modified molybdenum from irradiated CerMet nuclear fuel—part 1: design and assessment. J Radioanal Nucl Chem. Google Scholar
  2. 2.
    Ferris LM (1961) Aqueous processes for dissolution of uranium-molybdenum alloy reactor fuel elements. ORNL-3068, UC–10-Chemical Separation Processes for Plutonium and Uranium, 39 pGoogle Scholar
  3. 3.
    Sebenik RF et al (2012) Molybdenum and molybdenum compounds. In: Bohnet M, Brinker CJ, Cornils B (eds) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim, pp 522–566Google Scholar
  4. 4.
    Advanced fuelS for Generation IV reActors: Reprocessing and Dissolution—ASGARD (2012–2015) EURATOM FP7-Fission-2011 project No. 295825. Accessed 14 Nov 2018
  5. 5.
    Cheresnowsky MJ (1988) Process for producing ammonium molybdate from molybdenum trioxide. US Patent 4,735,791Google Scholar
  6. 6.
    Klavetter EA, Brown NE, Trudell D, Zheng Z, Thibaud-Erhey C, Ding G, Rayford GA (1994) Performance of crystalline silicotitanates for cesium removal from Hanford tank waste simulants. SAN094-2380C, 7 pGoogle Scholar
  7. 7.
    Zheng ZX, Gu D, Anthony RG, Klavetter E (1995) Estimation of cesium ion exchange distribution coefficientrs for cocentrated electrolytic solution when using crystalline silicotitanates. Ind Eng Chem Res 34:2142–2147CrossRefGoogle Scholar
  8. 8.
    Fryxell GE, Cao G (eds) (2012) Environmental applications of nanomaterials-synthesis, sorbents and sensors, 2nd edn. Imperial College Press, LondonGoogle Scholar
  9. 9.
    Celestian AJ, Kubicki JD, Hanson J, Clearfield A, Parise JB (2008) The mechanism responsible for extraordinary Cs ion selectivity in crystalline silicotitanate. J Am Chem Soc 130(35):11689–11694CrossRefGoogle Scholar
  10. 10.
    Miyabe S, Kinose Y, Kozasu K, Noguchi E, Sakamoto T (2017) Method for producing crystalline silicotitanate. Patent US 2017/0216813 A1Google Scholar
  11. 11.
    Miller JE, Brown NE (1997) Development and properties of crystalline silicotitanate (CST) ion exchangers for radioactive waste applications. Sandia National Laboratories, SAND97-0771.
  12. 12.
    Todd TA, Mann NR, Tranter TR, Šebesta F, John J et al (2001) Cesium sorption from concentrated acidic tank wastes using ammonium molybdophosphate-polyacrylonitrile composite sorbents. J Radioanal Nucl Chem 254(1):47–52CrossRefGoogle Scholar
  13. 13.
    Tranter TJ, Herbst RS, Todd TA, Olson AL, Eldredge HB (2002) Evaluation of ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) as a cesium selective sorbent for the removal of 137Cs from acidic nuclear waste solutions. Adv Environ Res 6:107–121CrossRefGoogle Scholar
  14. 14.
    Lehto J, Harjula R (1987) Separation of cesium from nuclear waste solutions with hexacyanoferrate(II) and ammonium phospo-molybdate. Solvent Extr Ion Exchange 5:343–352CrossRefGoogle Scholar
  15. 15.
    Šebesta F, John J, Motl A (1997) Development of composite ion exchangers and their use in treatment of liquid radioactive wastes. In: Waste treatment and immobilization technologies involving inorganics sorbents. IAEA-TECDOC–947. MAAE, Vienna, pp 79–103Google Scholar
  16. 16.
    Šebesta F, John J, Motl A, Štamberg K (1995) Evaluation of polyacrylonitrile (PAN) as a binding polymer for absorbers used to treat liquid radioactive wastes. Contractor report, Sandia, SAND95-2729.
  17. 17.
    Roginskij SZ, Malinina KV, Janovskij MI, Aľtšuler OV, Morochovec AE (1960) Polučenije koncentratov radioaktivnych izotopov cezija na ferrocianidach ťaželych mettalov iz rastvorov vysokim soděržanijem postoronnych solej (in Russian). Radiochimija 4:438–445Google Scholar
  18. 18.
    Prout WE, Russell ER, Groh HJ (1965) Ion exchange absorption of cesium by potassium hexacyanocobalt(II) ferrate(II). J Inorg Nucl Chem 27:473–479CrossRefGoogle Scholar
  19. 19.
    Doležal J (1975) Composition of double hexacyanoferrates(II) of transition metals suitable for cesium-137 uptake (in Czech). Dissertation, ÚJV Řež, 176 pGoogle Scholar
  20. 20.
    Kouřím V, Vojtěch O (1974) Methods of fission products separation from liquid radioactive wastes. Atom Energy Rev 12:215–273Google Scholar
  21. 21.
    Tanajev IV, Sejfer GB, Charitonov JJ, Kuzněcov VG, Koroľkov AP (1971) Chimija ferrocianidov. Nauka, MoscowGoogle Scholar
  22. 22.
    Pekárek V, Veselý V (1972) Synthetic inorganic ion exchangers—II, salts of heteropolyacids, insoluble ferrocyanides, synthetic aluminosilicates and miscellaneous exchangers, Talanta review. Talanta 19:1245–1283CrossRefGoogle Scholar
  23. 23.
    Doležal J, Kouřím V (1969) Affinities of insoluble cyanoferrates of iron(III), cobalt(II), nickel(II), cooper(II) and zinc(II) towards sodium, potassium, rubidium, caesium and ammonium. Radiochem Radioanal Lett 1(5):295–303Google Scholar
  24. 24.
    Boni AL (1966) Rapid ion exchange analysis of radiocesium in milk, urine, sea water, and environmental samples. Anal Chem 38:89–92CrossRefGoogle Scholar
  25. 25.
    Terada K, Havakawa H, Sawada K, Kiba T (1970) Silica gel as a support for inorganic ion-exchangers for the determination of caesium-137 in natural waters. Talanta 17:955–963CrossRefGoogle Scholar
  26. 26.
    Kawamura S, Shibata S, Kurotaki K, Takeshita H (1978) The sorption characteristies of radionuclides on copper hexacyanoferrate(II), and the determination of 137Cs in sea water. Anal Chim Acta 102:225–228CrossRefGoogle Scholar
  27. 27.
    Kawamura S, Shibata S, Kurotski K (1976) Adsorption characteristics of radionuclides on nickel hexacyanoferrate(II). Anal Chim Acta 81:91–97CrossRefGoogle Scholar
  28. 28.
    Berák L, Uher E, Marhol M (1975) Sorbents for the purification of low- and medium-level radioactive waters, review of developments, 1969–1974. Atom Energy Rev 13:325–366Google Scholar
  29. 29.
    Vaňura P, Franta P (1982) Inorganic sorbents and their use for the decontamination of liquid wastes and operating media in nuclear power plants with light water reactors (in Czech). Report ÚJV Řež No. 6067-ChGoogle Scholar
  30. 30.
    Lehto J, Harjula R, Wallace J (1987) Removal of cesium from nuclear waste solutions by potassium cobalt hexacyanoferrate(II) columns, waste management’87, 3, low-level waste. In: Proceedings of the Symposium on Waste Management at Tucson, Arizona, March 1–5, pp 93–95Google Scholar
  31. 31.
    John J, Šebesta F, Motl A (1999) Application of new inorganic-organic composite absorbers with polyacrylonitrile binding matrix for separation of radionuclides from liquid radioactive wastes. In: Choppin GR, Khankhasayev MKh (eds) Chemical separation technologies and related methods of nuclear waste management. NATO Sciences Series, vol 53. Kluwer Academic Publishers. ISBN 978-0-7923-5639-4Google Scholar
  32. 32.
    Tusa E (2014) Cesium and strontium removal with highly selective ion exchange media in Fukushima-14018. In: Proceedings of Waste Management, 2–6 March 2014, p 2880Google Scholar
  33. 33.
    Tusa E (2014) Efficiency of Fortum’s CsTreatR and SrTreatR in cesium and strontium removal in Fukushima Daiichi NPP. In: Proceedings of the European Nuclear Conference-ENC, p 1238Google Scholar
  34. 34.
    Delchet C, Tokarev A, Dumail X, Toquer G, Barré Y, Guari Y, Guerin Ch, Larionova J, Grandjean A (2012) Extraction of radioactive cesium using innovative functionalized porous materials. RSC Adv 13(2):5707–5716CrossRefGoogle Scholar
  35. 35.
    Šebesta F, John J, Motl A (1997) Removal of cesium and strontium from highly saline acidic or alkaline HLW using PAN-based composite absorbers. In: ICEM’97. American Society of Mechanical Engineers-ASME, New York. ISBN 0-7918–1242–1Google Scholar
  36. 36.
    Šebesta F, John J (1996) Phase 2 report on the evaluation of polyacrylonitrile (PAN) as a binding polymer for absorbers used to treat liquid radioactive wastes. Contractor report, Sandia, SAND96–1088.
  37. 37.
    Collins JL, Egan BZ, Anderson KK, Chase CW, Bell JT (1995) Batch test equilibration studies examining the removal of Cs, Sr, and Tc from supernatants from ORNL underground storage tanks by selected ion exchangers. In: Proceedings of 2nd International Conference of Waste Management, Washington DC, CONF-9505101-1, 15 pGoogle Scholar
  38. 38.
    Harjula R, Lehto J, Paajanen A, Brodkin L (2001) Removal of radioactive cesium from nuclear waste solutions with the transition metal hexacyanoferrate ion exchanger CsTreat. Nucl Sci Eng 137(2):206–2014CrossRefGoogle Scholar
  39. 39.
    Harjula R, Lehto J, Paajanen A, Tusa E, Yarnell P (2004) Use inorganic ion exchange materials as precoat filters for nuclear waste effluent treatment. React Funct Polym 60:85–95CrossRefGoogle Scholar
  40. 40.
    Prout WE, Russell ER, Groh HJ (1967) Removal of cesium from aqueous solutions by ion exchange. US Patent 3,296,123Google Scholar
  41. 41.
    Šebesta F (1997) Composite sorbents of inorganic ion-exchangers and polyacrylonitrile binding matrix, I. Methods of modification of properties of inorganic ion-exchangers for application in column packed beds. J Radioanal Nucl Chem 220(1):77–88CrossRefGoogle Scholar
  42. 42.
    Štefula V (1988) Study of suitable sorbents for the decontamination of liquid wastes issuing NPP A-1 (in Czech). Diploma thesis, CTU in Prague-FNSPE, 83 pGoogle Scholar
  43. 43.
    UOP A Honeywell Company (2012) UOP IONSIVTM ion exchangers: a superior nuclear waste remediation product. UOP A Honeywell Company. UOP5649a, USA, 4 pGoogle Scholar
  44. 44.
    Small H, Stevens TS, Bauman WC (1975) Novel ion exchange chromatographic method using conductimetric detection. Anal Chem 47:1801–1809CrossRefGoogle Scholar
  45. 45.
    The Dow Chemical Company (2011) Product data sheet: AMBERJET™ 1000 H Industrial Grade strong acid cation exchanger. Form No. 177-02181-0411, The Dow Chemical Company, 3 pGoogle Scholar
  46. 46.
    Smrčková Š (1999) Study of mercury separation with inorganic absorbers (in Czech). Dissertation, CTU in Prague-FNSPE, 119 pGoogle Scholar
  47. 47.
    Kawamura S, Kurotaki K, Izawa M (1969) Preparation and ion-exchange behaviour of potassium zinc ferrocyanide. Bull Chem Soc Jpn 42:3003–3004CrossRefGoogle Scholar
  48. 48.
    Kouřím V, Million B (1965) Separation of cesium-137 from uranium fission products using zinc ferrocyanide (in German). Collect Czech Chem Commun 30:2848–2850CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Nuclear ChemistryCzech Technical University in PraguePrague 1Czech Republic

Personalised recommendations