Advertisement

Initial quantum levels of captured muons in CO, CO2, and COS

  • Go YoshidaEmail author
  • Kazuhiko Ninomiya
  • Makoto Inagaki
  • Wataru Higemoto
  • Patrick Strasser
  • Naritoshi Kawamura
  • Koichiro Shimomura
  • Yasuhiro Miyake
  • Taichi Miura
  • Kenya M. Kubo
  • Atsushi Shinohara
Article
  • 30 Downloads

Abstract

The role of valence electrons for the muon capture process by molecules is experimentally investigated with the aid of cascade calculations. Low-momentum muons are introduced to gas targets of CO, CO2, and COS below atmospheric pressure. The initial states of captured muons are determined from the measured muonic X-ray structure of the Lyman and Balmer series. We propose that the lone pair electrons in the carbon atom of CO significantly contribute to the capture of a muon with large angular momenta.

Keywords

Muon Muonic atom Muon capture Muonic X-ray Carbon oxide 

Notes

Acknowledgements

Experiments were performed at the Materials and Life Science Experimental Facility of J-PARC under user programs (Proposal Nos. 2012A0039 and 2012B0103). This study was partially supported by a JSPS KAKENHI (Grant Numbers 26800213 and 261738).

References

  1. 1.
    Sugiyama J, Umegaki I, Nozaki H et al (2018) Nuclear magnetic field in solids detected with negative-muon spin rotation and relaxation. Phys Rev Lett 121:087202.  https://doi.org/10.1103/PhysRevLett.121.087202 CrossRefGoogle Scholar
  2. 2.
    Nishi T, Itahashi K, Berg GPA et al (2018) Spectroscopy of pionic atoms in 122Sn(d, 3He) reaction and angular dependence of the formation cross sections. Phys Rev Lett 120:152505.  https://doi.org/10.1103/PhysRevLett.120.152505 CrossRefGoogle Scholar
  3. 3.
    Inagaki M, Ninomiya K, Yoshida G et al (2018) Muon transfer rates from muonic hydrogen atoms to gaseous benzene and cyclohexane. J Nucl Radiochem Sci 18:5–8CrossRefGoogle Scholar
  4. 4.
    Fermi E, Teller E (1947) The capture of negative mesotrons in matter. Phys Rev 72:399.  https://doi.org/10.1103/PhysRev.72.399 CrossRefGoogle Scholar
  5. 5.
    Hughes VW, Wu CS (1977) Muon Physics, vol 1. Academic Press, USAGoogle Scholar
  6. 6.
    Kaeser K, Robert-Tissot B, Schller LA et al (1979) Muonic sodium X-ray intensities in different compounds. Helv Phys Acta 52:304–312Google Scholar
  7. 7.
    Hartmann FJ, Bergmann R, Daniel H et al (1982) Measurement of the muonic X-ray cascade in Mg, AI, In, Ho, and Au. Z Phys A Atoms Nucl 305:189–204.  https://doi.org/10.1007/BF01417434 CrossRefGoogle Scholar
  8. 8.
    Knight JD, Orth CJ, Schillaci ME et al (1983) Target-density effects in muonic-atom cascades. Phys Rev A 27:2936–2945CrossRefGoogle Scholar
  9. 9.
    Siems T, Anagnostopoulos DF, Borchert G et al (2000) First direct observation of Coulomb explosion during the formation of exotic atoms. Phys Rev Lett 84:4573–4576.  https://doi.org/10.1103/PhysRevLett.84.4573 CrossRefGoogle Scholar
  10. 10.
    Callies R, Daniel H, Hartmann FJ, Neumann W (1982) Detection of muonic auger electron lines from silver. Phys Lett A 91:441–443CrossRefGoogle Scholar
  11. 11.
    Akylas VR, Vogel P (1978) Muonic atom cascade program. Comput Phys Commun 15:291–302.  https://doi.org/10.1016/0010-4655(78)90099-1 CrossRefGoogle Scholar
  12. 12.
    Vogel P (1980) Muonic cascade: general discussion and application to the third-row elements. Phys Rev A 22:1600–1609.  https://doi.org/10.1103/PhysRevA.22.1600 CrossRefGoogle Scholar
  13. 13.
    Ponomarev LI (1973) Molecular structure effects on atomic and nuclear capture of mesons. Annu Rev Nucl Sci 23:395–430.  https://doi.org/10.1146/annurev.ns.23.120173.002143 CrossRefGoogle Scholar
  14. 14.
    Petrukhin VI, Suvorov VM (1976) Study of atomic capture and transfer of π meson in mixture of hydrogen with other gases. Sov Phys JETP 43:595–598Google Scholar
  15. 15.
    Schneuwly H, Pokrovsky VI, Ponomarev LI (1978) On coulomb capture ratios of negative mesons in chemical compounds. Nucl Phys Sect A 312:419–426.  https://doi.org/10.1016/0375-9474(78)90601-2 CrossRefGoogle Scholar
  16. 16.
    Horvath D (1981) Chemistry of pionic hydrogen atoms. Radiochim Acta 28:241–254CrossRefGoogle Scholar
  17. 17.
    Schneuwly H, Boschung M, Kaeser K et al (1983) Capture of negative muons in cubic and hexagonal structures of carbon and boron nitride. Phys Rev A 27:950–960.  https://doi.org/10.1103/PhysRevA.27.950 CrossRefGoogle Scholar
  18. 18.
    Imanishi N, Miyamoto S, Takeuchi Y et al (1988) Chemical-bond effect of pion-capture ratios in some alkali-metal compounds. Phys Rev A 37:43–48CrossRefGoogle Scholar
  19. 19.
    Schneuwly H (1991) Dependence of muonic X-ray intensity spectra and bond ionicities—example of oxygen and chlorine in compounds of third-row elements. Struct Chem 2:447–450.  https://doi.org/10.1007/BF00672238 CrossRefGoogle Scholar
  20. 20.
    Yoshida G, Ninomiya K, Ito TU et al (2015) Muon capture probability of carbon and oxygen for CO, CO2, and COS under low-pressure gas conditions. J Radioanal Nucl Chem 303:1277–1281.  https://doi.org/10.1007/s10967-014-3602-3 CrossRefGoogle Scholar
  21. 21.
    Knight JD, Orth CJ, Schillaci ME et al (1980) Coulomb capture ratios of negative muons in N2 + O2, NO and CO. Phys Lett A 79:377–379CrossRefGoogle Scholar
  22. 22.
    Kubo MK, Sakai Y, Tominaga T, Nagamine K (1989) Atomic negative muon capture in oxygen-containing organic compounds. Radiochim Acta 47:77–78CrossRefGoogle Scholar
  23. 23.
    O’Leary K, Jackson DF (1985) Intensity patterns of pionic X-rays emitted from simple molecules. Z Phys A Atoms Nucl 320:551–556CrossRefGoogle Scholar
  24. 24.
    Kirch K, Hauser P, Kottmann F, Simons LM (1999) Molecular effects in light muonic atoms. Hyperfine Interact 119:83–88CrossRefGoogle Scholar
  25. 25.
    Kirch K, Abbott D, Bach B et al (1999) Muonic cascades in isolated low-Z atoms and molecules. Phys Rev A 59:3375–3385CrossRefGoogle Scholar
  26. 26.
    Jacot-Guillarmod R, Bienz F, Boschung M et al (1988) Electronic structure and muonic X-ray intensities in isoelectronic series of neon and argon. Phys Rev A 37:3795–3800CrossRefGoogle Scholar
  27. 27.
    Ehrhart P, Hartmann FJ, Kohler E, Daniel H (1983) An experimental investigation of the pressure and concentration dependence of muonic Coulomb capture and cascade in gases. Z Phys A Atoms Nucl A 311:259–266CrossRefGoogle Scholar
  28. 28.
    Bacher R, Bl̈m P, Gotta D et al (1989) Relevance of ionization and electron refilling to the observation of the M1 transition (M1:2s-1s) in light muonic atoms. Phys Rev A 39:1610–1620.  https://doi.org/10.1103/PhysRevA.39.1610 CrossRefGoogle Scholar
  29. 29.
    Markushin VE (1994) Atomic cascade in muonic hydrogen and the problem of kinetic-energy distribution in the ground state. Phys Rev A 50:1137–1143CrossRefGoogle Scholar
  30. 30.
    Hauser P, Kirch K, Kottmann F, Simons LM (1998) Absolute X-ray yield of light muonic atoms. Nucl Instrum Methods Phys Res Sect A 411:389–395CrossRefGoogle Scholar
  31. 31.
    Kadono R, Miyake Y (2012) MUSE, the goddess of muons, and her future. Rep Prog Phys 75:026302.  https://doi.org/10.1088/0034-4885/75/2/026302 CrossRefGoogle Scholar
  32. 32.
    Miyake Y, Shimomura K, Kawamura N et al (2012) J-PARC muon facility, MUSE. Phys Procedia 30:46–49.  https://doi.org/10.1016/j.phpro.2012.04.037 CrossRefGoogle Scholar
  33. 33.
    Ninomiya K, Ito TU, Higemoto W et al (2011) Negative muon capture on nitrogen oxide molecules. J Korean Phys Soc 59:2917–2920CrossRefGoogle Scholar
  34. 34.
    Ninomiya K, Ito TU, Higemoto W et al (2019) Negative muon capture ratios for nitrogen oxide molecules. J Radioanal Nucl Chem 319:767–773.  https://doi.org/10.1007/s10967-018-6366-3 CrossRefGoogle Scholar
  35. 35.
    Hirayama H, Namito Y, Bielajew AF et al (2005) The EGS5 code system. SLAC-Report 730Google Scholar
  36. 36.
    Kessler D, Anderson HL, Dixit MS et al (1967) μ-Atomic Lyman and Balmer series in Ti, TiO2. and Mn. Phys Rev Lett 18:1179–1183CrossRefGoogle Scholar
  37. 37.
    Hartmann FJ, von Egidy T, Bergmann R et al (1976) Measurement of the muonic X-ray cascade in metallic iron. Phys Rev Lett 37:331–334CrossRefGoogle Scholar
  38. 38.
    Huheey JE (1983) Inorganic chemistry. Harper & Row publishers, New YorkGoogle Scholar
  39. 39.
    Jean Y, Volatron F (1993) An introduction to molecular orbitals. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Go Yoshida
    • 1
    • 2
    Email author
  • Kazuhiko Ninomiya
    • 2
  • Makoto Inagaki
    • 2
  • Wataru Higemoto
    • 3
  • Patrick Strasser
    • 4
  • Naritoshi Kawamura
    • 4
  • Koichiro Shimomura
    • 4
  • Yasuhiro Miyake
    • 4
  • Taichi Miura
    • 1
  • Kenya M. Kubo
    • 5
  • Atsushi Shinohara
    • 2
  1. 1.Radiation Science CenterHigh Energy Accelerator Research Organization (KEK)TsukubaJapan
  2. 2.Graduate School of ScienceOsaka UniversityToyonakaJapan
  3. 3.Japan Atomic Energy AgencyTokai, NakaJapan
  4. 4.Muon Science LaboratoryHigh Energy Accelerator Research Organization (KEK)TsukubaJapan
  5. 5.International Christian UniversityMitakaJapan

Personalised recommendations