Advertisement

Effect of electron irradiation on optical, thermal and electrical properties of polymer electrolyte

  • B. K. Mahantesha
  • V. RavindracharyEmail author
  • R. Padmakumari
  • R. Sahanakumari
  • Pratheeka Tegginamata
  • Ganesh Sanjeev
  • V. C. Petwal
  • V. P. Verma
Article
  • 34 Downloads

Abstract

Effects of 10 MeV electron beam irradiation on KBr/PVA composite films were studied using various experimental methods. The FTIR study shows that the irradiation produces chemical modification within the composite. The change in the optical properties like, increment in the transition dipole moment, dipole strength, dipole length, oscillator strength, optical activation energy and decrement in the optical band gap with radiation dose were observed from the UV–Vis study. These results may be attributed to the change in molecular ordering, creation of defects and formation of charge transfer complex incurred due to irradiation. Furthermore, the electrical conductivity increases with irradiation dose; initially due to crosslinking of polymer chains (below 150 kGy) and then due to chain scission (after 150 kGy). The TGA study reveals that the polymer chain crosslinking leads to enhancement in the onset temperature (T0) at lower dose and the scissioning of polymer chains leads to the decrement in the onset temperature at higher dose. Moreover, the activation energy of thermal decomposition is in good agreement with the value of onset temperature. This indicates that the crosslinking is predominantly high at lower doses and cleavage occurs at higher dose. The study reveals that the electron beam irradiation is a powerful tool to modify the optical, thermal and electrical properties of polymer electrolyte.

Keywords

Electron irradiation Polymer electrolyte Crosslinking Chain scission Dipole moment Degradation 

Notes

Acknowledgements

The authors are thankful to CeNSE, Indian Institute of Science, Bangaluru, funded by the Ministry of Electronics and Information Technology (MeitY), Govt of India for extending experimental facilities.

References

  1. 1.
    Gupta RK, Rhee H-W (2012) Effect of succinonitrile on electrical, structural, optical, and thermal properties of [poly(ethylene oxide)-succinonitrile]/LiI-I2 redox-couple solid polymer electrolyte. Electrochim Acta 76:159–164CrossRefGoogle Scholar
  2. 2.
    Zhang D, Zhang L, Yang K, Wang H, Chuang Yu, Di X, Bo X, Wang L-M (2017) Superior blends solid polymer electrolyte with integrated hierarchical architectures for all-solid-state lithium-ion batteries. ACS Appl Mater Interfaces 9:36886–36896CrossRefGoogle Scholar
  3. 3.
    Khapre SA, Yawale SP, Yawale SS (2012) Fabrication of thin film lithium-ion batteries using conducting polymer electrolytes. Sci Revs Chem Commun 2:336–339Google Scholar
  4. 4.
    Singh R, Polu AR, Bhattacharya B, Rhee H-W, Varlikli C, Singh PK (2016) Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application. Renew Sustain Energy Rev 65:1098–1117CrossRefGoogle Scholar
  5. 5.
    Chew KW, Tan KW (2011) The effect of ceramic fillers on PMMA-based polymer electrolyte salted with lithium triflate, LiCF3SO3. Int J Electrochem Sci 6:5792–5801Google Scholar
  6. 6.
    Praveena SD, Ravindrachary V, Bhajantri RF, Ismayil (2014) Free volume-related microstructural properties of lithium perchlorate/sodium alginate polymer composites. Polym Compos 35:1267–1274CrossRefGoogle Scholar
  7. 7.
    Liang G, Xu J, Xu W, Shen X, Bai Z, Yao M (2012) Thermal, mechanical and electrical properties of the PEO-based solid polymer electrolytes filled by yttrium oxide nanoparticles. J Wuhan Univ Technol-Mater Sci Ed. 27:495–500CrossRefGoogle Scholar
  8. 8.
    Ravi M, Bhavani S, Pavani Y, Narasimha Rao VVR (2013) Investigation on electrical and dielectrical properties of PVP:KCLO4 polymer electrolyte films. Indian J Pure Appl Phys 51:362–366Google Scholar
  9. 9.
    Wang F, Li L, Yang X, You J, Yanping X, Wang H, Ma Y, Gao G (2018) Influence of additives in a PVDF-based solid polymer electrolyte on conductivity and li-ion battery performance. Sustain Energy Fuels 2:492–498CrossRefGoogle Scholar
  10. 10.
    Praveena SD, Ravindrachary V, Bhajantri RF, Ismayil (2016) Dopant-induced microstructural, optical, and electrical properties of TiO2/PVA composite. Polym Compos 37:987–997CrossRefGoogle Scholar
  11. 11.
    Mahantesha BK, Ravindrachary V, Padmakumari R, Sahanakumari R, Sanjeev G, Verma VP (2018) Microstructural, thermal and electrical properties of electron irradiated Li2CO3 doped PVA. Indian J Pure Appl Phys 56:616–620Google Scholar
  12. 12.
    Subramania A, Kalyana Sundaram NT, Vijaya Kumar G, Vasudevan T (2006) New polymer electrolyte based on (PVA–PAN) blend for Li-ion battery applications. Ionics 12:175–178CrossRefGoogle Scholar
  13. 13.
    Pandey M, Joshi GM, Ghosh NN (2017) Ionic conductivity and diffusion coefficient of barium chloride-based polymer electrolyte with poly(vinyl alcohol)-poly(4-styrenesulphonic acid) polymer complex. Bull Mater Sci 40:655–666CrossRefGoogle Scholar
  14. 14.
    Singh D, Bhattacharya B, Virk HS (2015) Conductivity modulation in polymer electrolytes and their composites due to ion-beam irradiation. Solid State Phenom 239:110–148CrossRefGoogle Scholar
  15. 15.
    Ismayil, Ravindrachary V, Bhajantri RF, Praveena SD, Sanjeev G (2015) Impact of electron-beam irradiation on free-volume related microstructural properties of PVA:NaBr polymer composites. Nucl Instrum Methods Phys Res B 342:29–38CrossRefGoogle Scholar
  16. 16.
    Faltermeier A, Behr M, Reicheneder C, Proff P, Romer P (2011) Electron-beam irradiation of polymer bracket materials. Am J Orthod Dentofac Orthop.  https://doi.org/10.1016/j.ajodo.2009.10.038 Google Scholar
  17. 17.
    Radwan RM (2007) Electron induced modification in the optical properties of polypropylene. J Phys D Appl Phys 40:374–379CrossRefGoogle Scholar
  18. 18.
    Radwan RM (2009) Study of the optical properties of gamma irradiated high-density polyethylene. J Phys D Appl Phys.  https://doi.org/10.1088/0022-3727/42/1/015419 Google Scholar
  19. 19.
    Mott NF, Davis EA (1979) Electronic process in non-crystalline materials. Clarendon, OxfordGoogle Scholar
  20. 20.
    Harish A, Ravindrachary V, Bhajantri RF, Ismayil, Sanjeev G, Poojary B, Dutta D, Pujari PK (2008) electron irradiation induced microstructural modifications in BaCl2 doped PVA: a positron annihilation study. Polym Degrad Stab 93:1554–1563CrossRefGoogle Scholar
  21. 21.
    Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69CrossRefGoogle Scholar
  22. 22.
    Abdelaziz M (2011) Cerium (III) doping effect on optical and thermal properties of PVA films. Physica B Condens Matter 406:1300–1307CrossRefGoogle Scholar
  23. 23.
    Sin LT, Rahman WAWA, Rahmat AR, Mokhtar M (2011) Determination of thermal stability and activation energy of polyvinyl alcohol–cassava starch blend. Carbohydr Polym 83:303–305CrossRefGoogle Scholar
  24. 24.
    Fernandez MD, Fernandez MJ, Hoces P (2008) Poly(vinyl acetal)s containing electron-donor groups: synthesis in homogeneous phase and their thermal properties. React Funct Polym 68:39–56CrossRefGoogle Scholar
  25. 25.
    Abdelrazek EM, Elashmawi IS (2008) Characterization and physical properties of CoCl2 filled polyethyl-methacrylate films. Polym Compos 29:1036–1043CrossRefGoogle Scholar
  26. 26.
    Pavani Y, Ravi M, Bhavani S, Karthikeya RS, Narasimha Rao VVR (2018) Physical investigations on pure and KBr doped poly(vinyl alcohol) (PVA) polymer electrolyte films for solid state battery applications. J Mater Sci Mater Electron 29:5518–5524CrossRefGoogle Scholar
  27. 27.
    Ravindrachary V, Ismayil, Nayak SP, Dutta D, Pujari PK (2011) Free volume related fluorescent behavior in electron beam irradiated chalcone doped PVA. Polym Degrad Stab 96:1676–1686CrossRefGoogle Scholar
  28. 28.
    Reddeppa N, Sharma AK, Narasimha Rao VVR, Chen W (2013) preparation and characterization of pure and KBr doped polymer blend (PVC/PEO) electrolyte thin films. Microelectron Eng 112:57–62CrossRefGoogle Scholar
  29. 29.
    Aziz SB (2016) Modifying poly(vinyl alcohal) (PVA) from insulator to small-bandgap polymer: a novel approach for organic solar cells and optoelectronic devices. J Electron Mater 45:736–745CrossRefGoogle Scholar
  30. 30.
    Lopez-Gonzalez H, Moreno-Cruz E, Rojas-Hernande A, Becerril JJ (2018) Synthesis and characterization of praseodymium-2-hydroxypropyl-β-cyclodextrin inclusion complex. J Radioanal Nucl Chem.  https://doi.org/10.1007/s10967-018-6369-0 Google Scholar
  31. 31.
    Mishra R, Tripathy SP, Khathing DT, Dwivedi KK, Ghosh S, Muller M, Fink D (2001) Dose dependent modification in polyallyldiglycol carbonate (PADC) by electron irradiation. Radiat Eff Defects Solids.  https://doi.org/10.1080/10420150108214040 Google Scholar
  32. 32.
    Nouh SA, Bahareth RA (2013) Effect of electron beam irradiation on the structural, thermal and optical properties of poly(vinyl alcohol) thin film. Radiat Eff Defects Solids 5:6.  https://doi.org/10.1080/10420150.2012.741131 Google Scholar
  33. 33.
    Nanda P, Maity S, Pandey N, Ray R, Thakur AK, Tarafdar S (2011) Conductivity enhancement in polymer electrolytes on gamma irradiation. Radiat Phys Chem 80:22–27CrossRefGoogle Scholar
  34. 34.
    Ismayil, Ravindrachary V, Praveena SD, Mahesha MG (2018) Free volume modifications in chalcone chromophore doped PMMA films by electron irradiation: positron annihilation study. Radiat Phys Chem 144:194–203CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of PhysicsMangalore UniversityMangalagangotriIndia
  2. 2.Raja Ramanna Centre for Advanced Technology, Department of Atomic EnergyGovernment of IndiaIndoreIndia

Personalised recommendations