Advertisement

Fast and accurate simultaneous quantification of strontium-90 and yttrium-90 using liquid scintillation counting in conjunction with the Bateman equation

  • Kevin John Swearingen
  • Nathalie A. WallEmail author
Article
  • 13 Downloads

Abstract

A derivation of the Bateman equation combined with successive liquid scintillation counting measurements was used to rapidly determine accurate individual activities of 90Sr and 90Y in samples containing both isotopes regardless of the sample age. This method does not require chemical separation of Sr from Y or waiting for secular equilibrium to take place. Accurate data can be obtained within 3 half-lives of 90Y ingrowth (i.e. within 5 days), associated uncertainties with this method are comparable to those obtained with traditional techniques that include separations. This novel technique allows for decreased sample processing cost and time, without reducing data quality.

Keywords

Bateman equation Sr-90 Y-90 Liquid scintillation 

Notes

Acknowledgements

This work was supported by the Defense Threat Reduction Agency, Basic Research Award #HDTRA1-12-1-0015, to Washington State University.

References

  1. 1.
    Chadwick MB, Herman M, Oblozinsky P et al (2011) ENDF/B-VII. 1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl Data Sheets 112:2887–2996CrossRefGoogle Scholar
  2. 2.
    Baum EM, Ernesti MC, Knox HD, Miller TR, Watson AM (2009) Nuclides and isotopes chart of the nuclides, 17th edn. Knolls Atomic Power LaboratoryGoogle Scholar
  3. 3.
    Bowen WQ, Cottee M, Hobbs C (2012) Multilateral cooperation and the prevention of nuclear terrorism: pragmatism over idealism. Int Aff 88:349–368CrossRefGoogle Scholar
  4. 4.
    Charbonneau L, Benoit J-M, Jovanovic S et al (2014) A nuclear forensic method for determining the age of radioactive cobalt sources. Anal Methods 6:983–992CrossRefGoogle Scholar
  5. 5.
    Eby N, Hermes R, Charnley N, Smoliga JA (2010) Trinitite-the atomic rock. Geol Today 26:180–185CrossRefGoogle Scholar
  6. 6.
    Fedchenko V (2014) The role of nuclear forensics in nuclear security. Strateg Anal 38:230–247CrossRefGoogle Scholar
  7. 7.
    Jones AE, Turner P, Zimmerman C, Goulermas JY (2014) Classification of spent reactor fuel for nuclear forensics. Anal Chem 86:5399–5405CrossRefGoogle Scholar
  8. 8.
    Boulyga SF (2011) Mass spectrometric analysis of long-lived radionuclides in bio-assays. Int J Mass Spectrom 307:200–210CrossRefGoogle Scholar
  9. 9.
    Boulyga SF, Becker JS (2002) Isotopic analysis of uranium and plutonium using ICP-MS and estimation of burn-up of spent uranium in contaminated environmental samples. J Anal At Spectrom 17:1143–1147CrossRefGoogle Scholar
  10. 10.
    Public health statement: strontium. https://www.atsdr.cdc.gov/ToxProfiles/tp159-c1-b.pdf. Accessed 1 Feb 2019
  11. 11.
    Froidevaux P, Geering JJ, Valley JF (2006) 90Sr in deciduous teeth from 1950 to 2002: the Swiss experience. Sci Total Environ 367:596–605CrossRefGoogle Scholar
  12. 12.
    Mangano JJ, Gould JM, Sternglass EJ et al (2003) An unexpected rise in strontium-90 in US deciduous teeth in the 1990s. Sci Total Environ 317:37–51CrossRefGoogle Scholar
  13. 13.
    Alvarez A, Navarro N, Salvador S (1995) New method for 90Sr determination in liquid samples. J Radioanal Nucl Chem 191:315–322CrossRefGoogle Scholar
  14. 14.
    ASTM International (2013) ASTM D5811-08(2013) standard test method for strontium-90 in water. ASTM International, West ConshohockenGoogle Scholar
  15. 15.
    Wang JJ (2013) A quick liquid scintillation counting technique for analysis of 90Sr in environmental samples. Appl Radiat Isot 81:169–174CrossRefGoogle Scholar
  16. 16.
    Environmental Protection Agency (2010) Rapid radiochemical methods for selected radionuclides in water for environmental restoration following homeland security events. Montgomery, ALGoogle Scholar
  17. 17.
    Grate JW, Strebin R, Janata J et al (1996) Automated analysis of radionuclides in nuclear waste: rapid determination of 90Sr by sequential injection analysis. Anal Chem 68:333–340CrossRefGoogle Scholar
  18. 18.
    Holmgren S, Tovedal A, Jonsson S et al (2014) Handling interferences in 89Sr and 90Sr measurements of reactor coolant water: a method based on strontium separation chemistry. Appl Radiat Isot 90:94–101CrossRefGoogle Scholar
  19. 19.
    Kameo Y, Katayama A, Fujiwara A et al (2007) Rapid determination of 89Sr and 90Sr in radioactive waste using Sr extraction disk and beta-ray spectrometer. J Radioanal Nucl Chem 274:71–78CrossRefGoogle Scholar
  20. 20.
    Kiba T, Mizukami S (1958) Rapid separation of radioactive strontium extraction with TTA-hexone. Bull Chem Soc Jpn 31:1007–1013CrossRefGoogle Scholar
  21. 21.
    Lee JS, Park UJ, Son KJ, Han HS (2009) One column operation for 90Sr/90Y separation by using a functionalized-silica. Appl Radiat Isot 67:1332–1335CrossRefGoogle Scholar
  22. 22.
    Mateos JJ, Gomez E, Garcias F et al (2000) Rapid 90Sr/90Y determination in water samples using a sequential injection method. Sect Title Water 53:139–144Google Scholar
  23. 23.
    Maxwell SL, Culligan BK (2009) Rapid method for determination of radiostrontium in emergency milk samples. J Radioanal Nucl Chem 279:757–760CrossRefGoogle Scholar
  24. 24.
    Holmgren S, Tovedal A, Björnham O, Ramebäck H (2016) Time optimization of 90Sr determinations: sequential measurement of multiple samples during ingrowth of 90Y. J Radioanal Nucl Chem 110:150–154Google Scholar
  25. 25.
    O’Hara MJ, Burge SR, Grate JW (2009) Automated radioanalytical system for the determination of Sr-90 in environmental water samples by Y-90 Cherenkov radiation counting. Anal Chem 81:1228–1237CrossRefGoogle Scholar
  26. 26.
    Olfert JM, Dai X, Kramer-Tremblay S (2014) Rapid determination of 90Sr/90Y in water samples by liquid scintillation and Cherenkov counting. J Radioanal Nucl Chem 300:263–267CrossRefGoogle Scholar
  27. 27.
    Pan J, Emanuele K, Maher E, Lin ZC, Healey S, Regan P (2016) Analysis of radioactive strontium-90 in food by Čerenkov liquid scintillation counting. Appl Radiat Isot 126:214–218CrossRefGoogle Scholar
  28. 28.
    Tarancón A, Alonso E, Garc JF, Rauret G (2002) Sr/90 Y determination by Cerenkov, liquid scintillation and plastic scintillation techniques. Anal Chim Acta 471:135–143CrossRefGoogle Scholar
  29. 29.
    Tayeb M, Dai X, Corcoran EC, Kelly DG (2014) Evaluation of interferences on measurements of 90Sr/90Y by TDCR Cherenkov counting technique. J Radioanal Nucl Chem 300:409–414CrossRefGoogle Scholar
  30. 30.
    Tsroya S, Dolgin B, German U et al (2013) Fast determination of 90Sr/90Y activity in milk by Cherenkov counting. Appl Radiat Isot 82:332–339CrossRefGoogle Scholar
  31. 31.
    Vaca F, Manjón G, Garcia-León M (1998) Efficiency calibration of a liquid scintillation counter for 90Y cherenkov counting. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 406:267–275CrossRefGoogle Scholar
  32. 32.
    Bateman H (1910) The solution of a system of differential equations occuring in the theory of radioactive transformations. Proc Cambridge Philos Soc Math Phys Sci 15:423–427Google Scholar
  33. 33.
    Zhengshui H, Ying P, Wanwu M, Xun F (1995) Purification of organophosphorus acid extractants. Solvent Extr Ion Exch 13:965–976CrossRefGoogle Scholar
  34. 34.
    Friend MT, Wall NA (2017) Hafnium(IV) complexation with oxalate at variable temperatures. Radiochim Acta 105:379–388CrossRefGoogle Scholar
  35. 35.
    Swearingen KJ, Omoto T, Wall N (2017) Analysis of organic and high dissolved salt content solutions using inductively coupled plasma optical emission spectrometry. J Anal At Spectrom 37:1231–1236Google Scholar
  36. 36.
    Eikenberg J, Beer H, Rüthi M, Zumsteg I, Vetter A (2006) Precise determination of Sr-89 and 90-Sr 90-Y in various metrics. The LSC 3-window approach. In: Chatupnik S, Schonhofer F, Noakes J (eds) LSC 2005, advances in liquid scintillation spectrometry, pp 237–249Google Scholar
  37. 37.
    L’Annunziata M (2012) Handbook of radioactivity analysis. Academic Press, LondonGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of ChemistryWashington State UniversityPullmanUSA

Personalised recommendations