Advertisement

Temporal trends of carbon monoxide (CO) and radon (222Rn) tracers of urban air pollution

  • Maria A. ZoranEmail author
  • Roxana S. Savastru
  • Dan M. Savastru
  • Maria-Cristina V. Penache
Article
  • 17 Downloads

Abstract

The use of carbon monoxide (CO) and radon (222Rn) during 1 year continuous monitoring in Bucharest, Romania in relation with other air pollutants (ozone—O3, nitrogen dioxide—NO2, sulphur dioxide—SO2, airborne particulate matter PM10), air quality indices, meteorological variables and planetary boundary layer heights has provided relevant information about lower atmospheric dynamics. Annual average air daily mean CO (328.72 ± 100.02 µg/m3) and 222Rn (38.43 ± 17.68 Bq/m3) do not exceed the threshold limits established by European legislation. Statistical analysis of CO and 222Rn temporal trends revealed their suitability as tracer gases for urban air pollution.

Keywords

Air surface carbon monoxide (CO) and radon (222Rn) Air quality index (AQI) Planetary boundary layer (PBL) MOPITT satellite data Meteorological parameters Bucharest city 

Notes

Acknowledgements

This work was supported by Romanian Ministry of Research and Innovation Contract nr.18 PCCDI/2018- VESS-3-PIMS and Program NUCLEU OPTRONICA 6.

References

  1. 1.
    European Environment Agency (2017) Air quality in Europe. EEA report 13Google Scholar
  2. 2.
    WHO Regional Office for Europe (2017) Evolution of WHO air quality guidelines: past, present and future. CopenhagenGoogle Scholar
  3. 3.
    Turnbull JC, Miller JB, Lehman SJ, Tans PP, Sparks RJ, Southon J (2006) Comparison of (CO2)-C14, CO, and SF6 as tracers for recently added fossil fuel CO2 in the atmosphere and implications for biological CO2 exchange. Geophys Res Lett 33:L01817CrossRefGoogle Scholar
  4. 4.
    Faganeli Pucer J, Pucer Strumbelj E (2018) Impact of changes in climate on air pollution in Slovenia between 2002 and 2017. Environ Pollut 242:398–406CrossRefGoogle Scholar
  5. 5.
    Silverman MP (2017) Analysis of residence time in the measurement of radon activity by passive diffusion in an open volume: a micro-statistical approach. World J Nucl Sci Technol 7:252–273CrossRefGoogle Scholar
  6. 6.
    Chambers SD, Williams AG, Crawford J, Griffiths AD (2015) On the use of radon for quantifying the effects of atmospheric stability on urban emissions. Atmos Chem Phys 15:1175–1190CrossRefGoogle Scholar
  7. 7.
    Raub JA, Mathieu-Nolf M, Hampson NB, Thom SR (2000) Carbon monoxide poisoning and public health perspective. Toxicology 145(1):1–14CrossRefGoogle Scholar
  8. 8.
    Perrino C, Catrambone M, Di MA, Mura S, Pareti S, Sargolini T (2005) Urban pollution in the greater area of Rome. In: Proceedings of the conference air quality monitoring system-Suzhou, Suzhou, ChinaGoogle Scholar
  9. 9.
    Yashiro H, Sugawara S, Sudo K, Aoki S, Nakazawa T (2009) Temporal and spatial variations of carbon monoxide over the western part of the Pacific Ocean. J Geophys Res 114(D8):D08305CrossRefGoogle Scholar
  10. 10.
    Pfister G, Pétron G, Emmons LK, Gille JC, Edwards DP, Lamarque JF, Attie JL, Granier C, Novelli PC (2004) Evaluation of CO simulations and the analysis of the CO budget for Europe. J Geophys Res D: Atmos 109:1–14CrossRefGoogle Scholar
  11. 11.
    Kumar R, Naja M, Pfister GG, Barth MC, Brasseur GP (2013) Source attribution of carbon monoxide in India and surrounding regions during wintertime. J Geophys Res Atmos 118(4):1981–1995CrossRefGoogle Scholar
  12. 12.
    Ghude SD, Beig G, Kulkarni PS, Kanawade VP, Fadnavis S, Remedios JJ, Kulkarni SH (2011) Regional CO pollution over the Indian-subcontinent and various transport pathways as observed by MOPITT. Int J Remote Sens 32(21):6133–6148CrossRefGoogle Scholar
  13. 13.
    Girach IA, Nair PR (2010) Spatial distribution of near-surface CO over Bay of Bengal during winter: role of transport. J Atmos Solar Terr Phys 72(17):1241–1250CrossRefGoogle Scholar
  14. 14.
    Hernández-Paniagua I, Lowry D, Clemitshaw KC, Palmer PI, Fisher RE, France JL, Mendoza A, O’Doherty S, Forstere G, Lanoisellé M, Nisbet EG (2018) Diurnal, seasonal, and annual trends in tropospheric CO in Southwest London during 2000–2015: wind sector analysis and comparisons with urban and remote sites. Atmos Environ 177:262–274CrossRefGoogle Scholar
  15. 15.
    Desideri D, Roselli C, Meli MA, Feduzi L (2007) Comparison between the diurnal trends of ozone and radon gas concentrations measured at ground in the semi-rural site of Central Italy. J Radioanal Nucl Chem 273(2):345–351CrossRefGoogle Scholar
  16. 16.
    Zoran M, Savastru R, Savastru D (2012) Ground based radon (222Rn) observations in Bucharest, Romania and their application to geophysics. J Radioanal Nucl Chem 293(3):877–888CrossRefGoogle Scholar
  17. 17.
    Zoran M, Savastru D, Dida A (2015) Assessing urban air quality and its relation with radon (222Rn). J Radioanal Nucl Chem.  https://doi.org/10.1007/s10967-015-4681-5 Google Scholar
  18. 18.
    Mullerova M, Holy K, Blahusiak P, Bulko M (2018) Study of radon exhalation from the soil. J Radioanal Nucl Chem 315(2):237–241CrossRefGoogle Scholar
  19. 19.
    De Azevedo Py D Jr., De Almeida Dantas MV, Zafalon R (2016) A method for the determination of 222Rn flux from soil to atmosphere. J Radioanal Nucl Chem 307(1):821–827CrossRefGoogle Scholar
  20. 20.
    Li Y, Fan C, Xiang M, Liu P, Mu F, Meng Q, Wang W (2018) Short-term variations of indoor and outdoor radon concentrations in a typical semi-arid city of Northwest China. J Radioanal Nucl Chem 317:297–306CrossRefGoogle Scholar
  21. 21.
    Smetanova I, Holy K, Muellerova M, Polaskova A (2009) The effect of meteorological parameters on radon concentration in borehole air and water. J Radioanal Nucl Chem 283:101–109CrossRefGoogle Scholar
  22. 22.
    Bulko M, Holý K, Müllerová M (2018) On the relation between outdoor 222Rn and atmospheric stability determined by a modified Turner method. J Environ Radioact 189:79–92CrossRefGoogle Scholar
  23. 23.
    Porstendorfer J, Buterweck G, Reineking A (1991) Diurnal variation of the concentration of radon and its short-lived daughters in the atmosphere near the ground. Atmos Environ 25:709–713CrossRefGoogle Scholar
  24. 24.
    Dulaiova H, Peterson R, Burnett WC, Lane-Smith D (2005) A multi-detector continuous monitor for assessment of 222Rn in the coastal ocean. J Radioanal Nucl Chem 263:361–365CrossRefGoogle Scholar
  25. 25.
    Ashikawa N, Syojo N, Imamura H, Fujisaki M, Matsuoka N, Takashima Y (1998) The size distribution of 210Po in the atmosphere around Mt. Sakurajima in Kagoshima prefecture, Japan. J Radioanal Nucl Chem 230(1-2):9–104CrossRefGoogle Scholar
  26. 26.
    Desideri D, Roselli C, Feduzi L, Assunta Meli M (2006) Monitoring the atmospheric stability by using radon concentration measurements: a study in a Central Italy site. J Radioanal Nucl Chem 270:523–530CrossRefGoogle Scholar
  27. 27.
    Perrino C (2012) Natural radioactivity from radon progeny as a tool for the interpretation of atmospheric pollution events- sources and measurements of radon and radon progeny applied to climate and air quality studies. IAEA, Vienna, pp 151–159Google Scholar
  28. 28.
    Perrino C, Pietrodangelo A, Febo A (2001) An atmospheric stability index based on radon progeny measurements for the evaluation of primary urban pollution. Atmos Environ 35:5235–5244CrossRefGoogle Scholar
  29. 29.
    De Wekker SFJ (2008) Observational and numerical evidence of depressed convective boundary layer heights near a mountain base. J Appl Meteorol Climatol 47:1017–1026CrossRefGoogle Scholar
  30. 30.
    Zhu X, Tang G, Guo J, Hu B, Song T, Wang L, Xin J, Gao W, Münkel C, Schäfer K, Li X, Wang Y (2018) Mixing layer height on the North China plain and meteorological evidence of serious air pollution in southern Hebei. Atmos Chem Phys 18:4897–4910.  https://doi.org/10.5194/acp-18-4897-2018 CrossRefGoogle Scholar
  31. 31.
    Wang W, Gong W, Mao F et al (2016) An improved iterative fitting method to estimate nocturnal residual layer height. Atmosphere 7(8):106CrossRefGoogle Scholar
  32. 32.
    Wei J, Tang G, Zhu X, Wang L, Liu Z, Cheng M et al (2017) Thermal internal boundary layer and its effects on air pollutants during summer in a coastal city in North China. J Environ Sci 70:37–44CrossRefGoogle Scholar
  33. 33.
    Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D, Haywood J, Lean J, Lowe D, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2008) Changes in atmospheric constituents and in radiative forcing. In: Solomon S et al (eds) Climate change 2007: the physical science basis, chapter 2. Contribution of Working Group I to the Fourth Assessment Report of the IPCC, Cambridge University Press, Cambridge, UK. http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521705967
  34. 34.
    Thompson AM (1992) The oxidizing capacity of the earth’s atmosphere: probable past and future changes. Science 256(5060):1157–1165CrossRefGoogle Scholar
  35. 35.
    Derwent RG, Powlson DS, Conrad R (1995) Air chemistry and terrestrial gas emissions: a global perspective. Philos Trans R Soc London Ser A 351:205–217CrossRefGoogle Scholar
  36. 36.
    Yadav R, Sahu LK, Beig G, Jaaffrey SNA (2016) Role of long-range transport and local meteorology in seasonal variation of surface ozone and its precursors at an urban site in India. Atmos Environ 176–177:96–107Google Scholar
  37. 37.
    Yadav R, Sahu LK, Beig G, Tripathi N, Jaaffrey SNA (2017) Ambient particulate matter and carbon monoxide at an urban site of India: influence of anthropogenic emissions and dust storms. Environ Pollut 225:291–303CrossRefGoogle Scholar
  38. 38.
    Deeter MN, Edwards DP, Francis GL, Gille JC, Martínez-Alonso S, Worden HM, Sweeney C (2017) A climate-scale satellite record for carbon monoxide: the MOPITT version 7 product. Atmos Meas Tech 10:2533–2555.  https://doi.org/10.5194/amt-10-2533-2017 CrossRefGoogle Scholar
  39. 39.
    Girach IA, Nair PR (2014) Carbon monoxide over Indian region as observed by MOPITT. Atmos Environ 99:599–609CrossRefGoogle Scholar
  40. 40.
    Chilès JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New YorkCrossRefGoogle Scholar
  41. 41.
    Zhou Y, Mao H, Demerjian K, Hogrefe C, Liu J (2017) Regional and hemispheric influences on temporal variability in baseline carbon monoxide and ozone over the Northeast US. Atmos Environ 164:309–324CrossRefGoogle Scholar
  42. 42.
    Kim PS, Jacob DJ, Liu X, Warner JX, Yang K, Chance K, Thouret V, Nedelec P (2013) Global ozone-CO correlations from OMI and AIRS: constraints on tropospheric ozone sources. Atmos Chem Phys 13:9321–9335CrossRefGoogle Scholar
  43. 43.
    Hegarty J, Mao H, Talbot R (2009) Synoptic influences on springtime tropospheric O3 and CO over the North American export region observed by TES. Atmos Chem Phys 9:3755–3776CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.IT DepartmentNational Institute of R&D for OptoelectronicsMagurele-BucharestRomania
  2. 2.CEE Rhône-Alpes (INSEEC Exécutive)LyonFrance

Personalised recommendations