Advertisement

The oxidation of UF4 in FLiNaK melt and its electrolysis

  • Dong Han
  • Changfeng She
  • Yongsheng Niu
  • Xu Yang
  • Junxia Geng
  • Rongrong Cui
  • Lixin Sun
  • Congwei Hu
  • Yiyang Liu
  • Tao Su
  • Hongtao Liu
  • Wei HuangEmail author
  • Yu Gong
  • Qingnuan LiEmail author
Article
  • 18 Downloads

Abstract

The oxidation of UF4 in LiF–NaF–KF (FLiNaK) melt with oxygen sparging was conducted at 823 K and analyzed by in situ infrared spectrometer, UV–Vis absorption spectrometer, and other characterizations with thermodynamic calculations, indicating UF4 was converted to UO2F2 with the following reaction mechanism: 2UF4 (l) + O2(g) + 2H2O(g) = 2UO2F2(l) + 4HF(g). Cyclic voltammetry measurements showed that the reduction of UO22+ in oxidized melt exhibited two steps both with one exchanged electron: UO22+ + e → UO2+ and UO2+ + e → UO2. By potentiostatic electrolysis, the product of UO2 was obtained with nanoscale triangular sheet structure.

Keywords

UF4 FLiNaK Oxidation O2 sparging UO22+ Potentiostatic electrolysis 

Notes

Acknowledgements

This work was supported by the “Strategic Priority Research Program” and “Frontier Science Key Program” of the Chinese Academy of Sciences (Grant No. XDA02030000 and QYZDYSSW-JSC016), National Natural Science Foundation of China (21601200) and Youth Innovation Promotion Association of CAS (2017307).

References

  1. 1.
    Corwin WR, Burchell TD, Halsey W, Hayner G, Katoh Y, Klett JW, Mcgreevy TE, Nanstad RK, Ren W, Snead LL (2005) Office of scientific and technical information technical reports. ORNL/TM-2005/556 (2005)Google Scholar
  2. 2.
    A technology roadmap for generation IV nuclear energy system, U S DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum,GIF-002-00, December 2002Google Scholar
  3. 3.
    Serp J, Allibert M, Beneš O, Delpech S, Feynberg O, Ghetta V, Heuer D, Holcomb D, Ignatiev V, Kloosterman JL, Luzzi L, Merle-Lucotte E, Uhlíř J, Yoshioka R, Zhimin D (2014) The molten salt reactor (MSR) in generation IV: overview and perspectives. Prog Nucl Energy 77:308–319.  https://doi.org/10.1016/j.pnucene.2014.02.014 CrossRefGoogle Scholar
  4. 4.
    Xu H, Dai Z, Cai X (2014) Some physical issues of the thorium molten salt reactor nuclear energy system. Nucl Phys News 24:24–30CrossRefGoogle Scholar
  5. 5.
    Rosental MW, Haubenreich PN, Briggs RB (1972) The development status of molten-salt breeder reactors. ORNL-4812Google Scholar
  6. 6.
    Mathieu L, Heuer D, Brissot R, Garzenne C, Brun CL, Lecarpentier D, Liatard E, Loiseaux JM, Méplan O, Merle-Lucotte E (2006) The thorium molten salt reactor: moving on from the MSBR. Prog Nucl Energy 48(7):664–679CrossRefGoogle Scholar
  7. 7.
    Uhlíř J (2009) Reprocessing of molten salt reactor fuel. Trans Am Nucl Soc 100:501–502Google Scholar
  8. 8.
    Li Q (2014) Current progress in R&D on pyroprocess technology for TMSR in SINAP. In: International pyroprocessing research conference, Idaho Falls, ID. pp 19–23Google Scholar
  9. 9.
    The ThorCon Team (2016) ThorCon™—the do-able molten salt reactor. VersionGoogle Scholar
  10. 10.
    Pyrochemical separation in nuclear applications (2004) Organization for Economic Cooperation and development.(OECD) (I. 92-64-02071-3, ed.). NUCLEAR ENERGY AGENCYGoogle Scholar
  11. 11.
    Rance P, Hebditch D, Fox O, Taylor R (2010) National programmes in chemical partitioning, a status update: chapter 8 United Kingdom, pp 79–98Google Scholar
  12. 12.
    “Spent fuel reprocessing options” (2008) Agency IAE. International Atomic Energy Agency, (I. 92-64-02071-3, ed.)Google Scholar
  13. 13.
    Straka M, Korenko M, Lisý F (2010) Electrochemistry of uranium in LiF–BeF2 melt. J Radioanal Nucl Chem 284:245–252.  https://doi.org/10.1007/s10967-010-0478-8 CrossRefGoogle Scholar
  14. 14.
    Delpech S, Merle-Lucotte E, Heuer D, Allibert M, Ghetta V, Le-Brun C, Doligez X, Picard G (2009) Reactor physic and reprocessing scheme for innovative molten salt reactor system. J Fluorine Chem 130:11–17.  https://doi.org/10.1016/j.jfluchem.2008.07.009 CrossRefGoogle Scholar
  15. 15.
    Heuer D, Merle-Lucotte E, Allibert M, Doligez X, Ghetta V (2010) Simulation tools and new developments of the molten salt fast reactor. Revue Générale Nucléaire 6:95–100CrossRefGoogle Scholar
  16. 16.
    Dong H, Feng SC, Jia P (2018) Electrochemical Behavior of UO2F2 and its electrodeposition from UO2F2-FLiNaK melt. J Electrochem Soc 165:D301–D306.  https://doi.org/10.1149/2.0971807jes CrossRefGoogle Scholar
  17. 17.
    Young JP, White JC, Chem A (1960) Absorption spectra of molten fluoride salts. Solutions of several metal ions in molten lithium fluoride-sodium fluoride-potassium fluoride. Anal Chem 32:799–802CrossRefGoogle Scholar
  18. 18.
    Zong G, Chen B, Zhang L, Sun J, Dong Q, Chen W, Xiao J (2014) Preparation of FLiNaK molten salt. Nucl Tech 37:1–6Google Scholar
  19. 19.
    Long D, Huang W, Jiang F, Tian L, Li Q (2013) Study on the electrochemical extraction of rare earth elements from FLINAKGoogle Scholar
  20. 20.
    Huang W, Tian LF, She CF, Jiang F, Zheng HY, Li WX, Wu GZ, Long DW, Li QN (2014) Electrochemical behaviour of europium(III)-Europium(II) in LiF–NaF–KF molten salt. Electrochim Acta 147:114–120.  https://doi.org/10.1016/j.electacta.2014.08.119 CrossRefGoogle Scholar
  21. 21.
    Katz JJ (1951) the chemistry of uranium part I: the element its binary and related compoundsGoogle Scholar
  22. 22.
    Ferris LM (1959) Kinetics of the reaction of uranium tetrafluoride and oxygen. Ind Eng Chem 51:200–202CrossRefGoogle Scholar
  23. 23.
    Ferris LM (1957) A study of the reaction: 2UF4 + O2 → UF6 + UO2F2. I. Side reactions and thermodynamics. J Am Chem Soc 79:5419–5421CrossRefGoogle Scholar
  24. 24.
    McDowell RS, Asprey LB, Paine RT (1974) Vibrational spectrum and force field of uranium hexafluoride. J Chem Phys 61:3571–3580.  https://doi.org/10.1063/1.1682537 CrossRefGoogle Scholar
  25. 25.
    Burke TG, Smith DF, Nielsen AH (1952) The molecular structure of MoF6, WF6, and UF6 from infrared and Raman spectra. J Chem Phys 20:447–454.  https://doi.org/10.1063/1.1700440 CrossRefGoogle Scholar
  26. 26.
    Souter PF, Andrews L (1997) Infrared spectra of some uranium oxyfluoride molecules isolated in solid argon. J Mol Struc 412:161–167CrossRefGoogle Scholar
  27. 27.
    Hamel C, Chamelot P, Laplace A, Walle E, Dugne O, Taxil P (2007) Reduction process of uranium(IV) and uranium(III) in molten fluorides. Electrochim Acta 52:3995–4003.  https://doi.org/10.1016/j.electacta.2006.11.018 CrossRefGoogle Scholar
  28. 28.
    Peng H, Shen M, Zuo Y, Tang X, Tang R, Xie L (2016) Electrochemical technique for detecting the formation of uranium-containing precipitates in molten fluorides. Electrochim Acta 222:1528–1537.  https://doi.org/10.1016/j.electacta.2016.11.135 CrossRefGoogle Scholar
  29. 29.
    Jiang F, Huang W, Zheng H, Zhu T, She C, Gao S, Long D, Gong Y, Li Q (2017) Electrochemical behavior and electrowinning of uranium(IV) from FLiNaK molten salt. J Radioanal Nucl Chem 311:1891–1897.  https://doi.org/10.1007/s10967-016-5160-3 CrossRefGoogle Scholar
  30. 30.
    SouČEk P, LisÝ F, TulÁČKovÁ R, UhlÍŘ J, MrÁZ R (2005) Development of electrochemical separation methods in molten LiF–NaF–KF for the molten salt reactor fuel cycle. J Nucl Sci Tech 42:1017–1024.  https://doi.org/10.1080/18811248.2005.9711054 CrossRefGoogle Scholar
  31. 31.
    Korenko M, Straka M, Szatmáry L, Ambrová M, Uhlíř J (2013) Electrochemical separation of uranium in the molten system LiF–NaF–KF–UF4. J Nucl Mater 440:332–337.  https://doi.org/10.1016/j.jnucmat.2013.04.078 CrossRefGoogle Scholar
  32. 32.
    Robins RG (1961) Uranium dioxide single crystals by electrodeposition. J Nucl Mater 3:294–301CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Center of Excellence TMSR Energy SystemChinese Academy of SciencesShanghaiChina

Personalised recommendations