EQRAIN: uranium and plutonium interlaboratory exercises from 1997 to 2016—comparison to ITVs-2010

  • Marielle CrozetEmail author
  • Danièle Roudil
  • Corinne Rigaux
  • Caroline Bertorello
  • Sébastien Picart
  • Christophe Maillard


Since 1987, the CEA’s Committee for the establishment of analysis methods (CETAMA) has regularly implemented interlaboratory comparisons, entitled “evaluation of the quality results of analysis in the nuclear industry” (EQRAIN). Notably, the EQRAIN U and EQRAIN Pu interlaboratory comparisons assess proficiency in measuring a mass content of uranium or plutonium in reference solutions. This paper presents the results of measurement uncertainty assessments from EQRAIN U and EQRAIN Pu comparisons over 20 years of exercises (1997–2016). The mathematical approach developed in this work allowed to estimate the impact of short-term systematic and random errors to the overall uncertainty of each analytical method used in the interlaboratory comparison program. This statistical analysis shows a good consistency between measurement uncertainty values from EQRAINs and the measurement uncertainty target values established by the International Atomic Energy Agency for nuclear material balances (ITVs-2010).


Measurement uncertainty assessment EQRAIN Uranium Plutonium Proficiency test Interlaboratory comparisons ITVs-2010 

List of symbols


CEA Committee for the establishment of analysis methods


Quality assessment of analysis results in the nuclear industry


International target values of measurement uncertainties from IAEA published in 2010


Component of ITV, standard uncertainty of the measurement short-term systematic error, data from IAEA


Component of ITV, standard uncertainty of the measurement random error, data from IAEA


CETAMA’s Working Group on uranium


CETAMA’s Working Group on plutonium


Result code i: i = 1 to n


EQRAIN j: j = 1 to p


Measurement result


Reference value


Deviation of x from xref


Mean of d


Variance of d


Short-term systematic error of dij, creation of B ~ N (0, σ(d) s 2 )


Variance of B


Estimation of σ(d) s 2 , variance of B


Random error of dij, creation of ε ~ N (0, σ(d) r 2 )


Variance of ε


Estimation of σ(d) r 2 , variance of ε


Measurement standard uncertainty, estimated from EQRAINs


Component of u(x), standard uncertainty of the measurement short-term systematic error, estimated from EQRAINs


Component of u(x), standard uncertainty of the measurement random error, estimated from EQRAINs


Effective number of reported results par EQRAIN


Relative standard uncertainty


Expanded uncertainty (with a coverage factor k of 2)



The authors wish to thank all members of Working Group “Uranium” (CETAMA WG2) and Working Group “Plutonium” (CETAMA WG3) from 1997 up to now, without whom this paper would not exist, and particularly the WG chairs: Michel Sourrouille (chair of WG2 from 1997 to 2004), Charles Kiper (chair of WG2 from 2004 to 2012), Manuel Organista (chair of WG2 from 2012 to 2018), Serge Amoravain (chair of WG3 from 1994 to 1999), Hervé Chollet (chair of WG3 from 1999 to 2008), Carole Viallesoubranne (chair of WG3 from 2008 to 2009), Jean-Marc Adnet (chair of WG3 from 2009 to 2013), and Alexandre Ruas (chair of WG3 from 2013 to 2015). We are also grateful to the LAMMAN staff.

Supplementary material

10967_2018_6399_MOESM1_ESM.doc (668 kb)
Supplementary material 1 (DOC 668 kb)


  1. 1.
    International Atomic Energy Agency. IAEA Safeguards Glossaty 2001 edition, para. 6.35, International Nuclear Verification Series No.3, ViennaGoogle Scholar
  2. 2.
    ISO 17043:2010. Conformity assessment—general requirements for proficiency testing. International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  3. 3.
    ISO 17034:2016. General requirements for the competence of reference materials producers. International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  4. 4.
    ISO Guide 35 (2006) Reference materials—general and statistical principles for certification. International Organization for Standardization, GenevaGoogle Scholar
  5. 5.
    ISO 13528:2015, ISO/TC69/SC6. Statistical methods for use in proficiency testing by interlaboratory comparison. International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  6. 6.
    International Atomic Energy Agency, Departement of Safeguards, STR-368 (2010) International target values 2010 for measurement uncertainties in safeguarding nuclear materials. IAEA, ViennaGoogle Scholar
  7. 7.
    Srinivasan B, Mathew KJ, Croatto P, Narayanan U, Neuhoff N (2007) New Brunswick Laboratory safeguards measurement evaluation (SME) program: operational features. Int J Nucl Knowl Manag 1:17–39Google Scholar
  8. 8.
    Regular European Interlaboratory Measurement Evaluation Program, REIMEP. Accessed 8 Jan 2019
  9. 9.
    Jakopic R, Aregbe Y, Bujak R, Richter S, Buda R, Zuleger E (2015) Accred Qual Assur 20:421–429CrossRefGoogle Scholar
  10. 10.
    Pereira de Oliveira O, De Bolle W, Richter S, Alonso A, Kühn H, Sarkis JES, Wellum R (2005) Int J Mass Spectrom 246:35–42CrossRefGoogle Scholar
  11. 11.
    Srinivasan B, Mathew KJ, Narayanan UI, Guthrie WF, Sampson TE (2009) J Radioanal Nucl Chem 282:963–970CrossRefGoogle Scholar
  12. 12.
    Bürger S, Balsley SD, Baumann S, Berget J, Boulyga SF, Cunningham JA, Kappel S, Koepf A, Poths J (2012) Int J Mass Spectrom 311:40–50CrossRefGoogle Scholar
  13. 13.
    Raptis K, Duhamel G, Ludwig R, Balsley S, Bürger S, Mayorov V, Koepf A, Hara S, Itoh Y, Yamaguchi K, Yamaguchi T, Ninagawa J (2013) J Radioanal Nucl Chem 296:585–592CrossRefGoogle Scholar
  14. 14.
    Statistical concepts and techniques for IAEA Safeguards (1998) 15 edn. IAEA/SG/SCT/5, International Atomic Energy Agency IAEA ViennaGoogle Scholar
  15. 15.
    Walsh SJ, Venzin A, Wegrzynek D, Mansoux C (2016) Using reproducibility to test the adequacy of GUM based uncertainty quantification. In: Paper of the American nuclear society conference: advances in nuclear nonproliferation technology and policy conference: bridging the gaps in nuclear nonproliferation, Sante Fe, New MexicoGoogle Scholar
  16. 16.
    Jaech JL (1985) Statistical analysis of measurement errors. Wiley, New-YorkGoogle Scholar
  17. 17.
    ISO 3534-1:2006. Statistics _ vocabulary and symbols _ Part 1: general statistical terms and terms used in probabilityGoogle Scholar
  18. 18.
    JCGM 200:2012. International vocabulary of metrology—basic and general concepts and associated terms (VIM), 3rd edn. 2008 version with minor correctionsGoogle Scholar
  19. 19.
    JCGM 100:2008. Evaluation of measurement data—guide to the expression of uncertainty in measurement, GUM 1995 with minor correctionsGoogle Scholar
  20. 20.
    Certificat de matériau de référence “AGARIC”, Lot 2001/1, Version 3 2017, avalailable on request to the CETAMAGoogle Scholar
  21. 21.
    Certificat de matériau de référence “OTU-1”, Lot 1993/1, Version 3 2017, avalailable on request to cetama@cea.frGoogle Scholar
  22. 22.
    Certificat du matériau de référence plutonium métal «MP2», Lot 1987/1, Version 09-2016, avalailable on request to cetama@cea.frGoogle Scholar
  23. 23.
    Wagner JF, Vian A (1999) Techniques de l’Ingénieur P3720:V2Google Scholar
  24. 24.
    Handbook of Stable Isotope Analytical Techniques (2004)Volume I Pages 820–834 Chapter 37—introduction to isotope dilution mass spectrometry (IDMS), Michale Berglund,
  25. 25.
    Bedson P (2007) Guidelines for achieving high accuracy in isotope dilution mass spectrometry (IDMS), Royal Society of Chemistry, Analytical Methods Committee, Sub-Committee on High Accuracy Analysis by Mass Spectrometry, Coordinating Editors Sargent M, Harte R, Harrington CGoogle Scholar
  26. 26.
    ISO 7097–2 (2004) Nuclear fuel technology—determination of uranium in solutions, uranium hexafluoride and solids—part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method. International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  27. 27.
  28. 28.
    Davies W, Gray W (1964) Talanta 11:1203CrossRefGoogle Scholar
  29. 29.
    Eberle AR, Lerner MW, Goldbeck CG, Rodden CJ (1970) U.S.Atomic Energy Commission, New Brunswick, NJ, NBL-252Google Scholar
  30. 30.
    Aigner H, Hollenthoner S, Keroe E, Kuhn E, Delle Site A, Zoigner A (1983) Fifth annual symposium on safeguards and nuclear materials management. Versailles, FranceGoogle Scholar
  31. 31.
    Harrar JE, Boyle WG, Breshears JD, Pomernacki CL, Brand HR,Kray AM, Sherry RJ, Pastrone JA (1976) Proc. Inst. of nuclear materials management meeting, SeattleGoogle Scholar
  32. 32.
    Reeder SD, Delmastro JR (1978) NBS Publication, p 528Google Scholar
  33. 33.
    Zook AC, Collins LL, Moran BW 980 NBL-293, NewBrunswick Laboratory, USDOEGoogle Scholar
  34. 34.
    Goldbeck CG, Lerner MW (1972) Anal Chem 44:594CrossRefGoogle Scholar
  35. 35.
    Goldbeck CG, Lerner MW, Peoples GE (1973) Annual progress report for the period July 1972 to June 1973, U.S. Atomic Energy Commission, New Brunswick Laboratory, NJ, NBL-267Google Scholar
  36. 36.
    Mathew KJ, Bürger S, Vogt S, Mason P, Morales-Arteaga ME, Narayanan I (2009) J Radioanal Nucl Chem 282:939–944CrossRefGoogle Scholar
  37. 37.
    Ronesch K, Jammet G, Berger J, Doubek N, Bagliano G, Deron S, Kuvik V (1992) IAEA/AL/059. Accessed 8 Jan 2019
  38. 38.
    Lecouteux C et al (1992) Anal Chim Acta 256:163–176CrossRefGoogle Scholar
  39. 39.
    JMP® 13.0.0 (Statistical Discovery), SAS Institute Inc. Accessed 8 Jan 2019
  40. 40.
    Linsinger TPJ, Pauwels J, Van der Veen AMH, Schimmel H, Lamberty A (2001) Accred Qual Assur 6:20–25CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.CEA Nuclear Energy Division, Research Department of Mining and Fuel RecyclingAnalysis Method Establishment Commission (CETAMA)Bagnols-sur-CèzeFrance
  2. 2.CEA Nuclear Energy Division, Research Department of Mining and Fuel RecyclingAtalante Analysis Laboratory (L2AT)Bagnols-sur-CèzeFrance

Personalised recommendations