Advertisement

Organically bound tritium: optimization of measurements in environmental matrices by combustion method and liquid scintillation spectrometry

  • S. Rashmi Nayak
  • Renita Shiny D’Souza
  • S. Srinivas Kamath
  • M. P. Mohan
  • S. Bharath
  • Trilochana Shetty
  • K. Sudeep Kumara
  • B. Narayana
  • B. N. Dileep
  • P. M. Ravi
  • N. KarunakaraEmail author
Article
  • 23 Downloads

Abstract

Optimization of a method, based on thermal oxidation using a tube furnace system (Pyrolyser), for the separation of organically bound tritium (OBT) from environmental matrices is discussed. Results show that a maximum of ~ 4 g of the vegetation sample, typical wild plant leaves of tropical regions, and ~ 8 g of sediment sample can be combusted efficiently in the pyrolyser system. The recovery of OBT from wheat sample was observed to be ~ 92% and that for sediment sample was ~ 88%. The minimum detectable activity (MDA) at 95% confidence level was 3.4 Bq kg−1 for a sample weight = 4 g, counting time = 30,000 s, and detection efficiency = 23%.

Keywords

Tritium (3H) Organically bound tritium (OBT) RADDEC pyrolyser Quantulus 1220 liquid scintillation spectrometer (LSS) Quench curve generation Recovery Optimization 

Notes

Acknowledgements

The authors would like to thank the Board of Research in Nuclear Sciences (BRNS), DAE, Govt. of India, for funding the research programme. The authors would like to thank Shri. H. S. Kushwaha, Outstanding Scientist, BRNS, Mumbai, for his comments, suggestions and guidance.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest of the work reported in this article with any other agencies.

References

  1. 1.
    Singh VP, Pai KR, Veerendra DD, Vishnu MS, Vijayan P, Managanvi SS, Badiger NM, Bhat HR (2010) Estimation of biological half-life of tritium in coastal region of India. Radiat Prot Dosim 142:153–159CrossRefGoogle Scholar
  2. 2.
    ICRP (1983) Radionuclide transformations: energy and intensity of emissions. International Commission of Radiological Protection Publication, 38, ElsevierGoogle Scholar
  3. 3.
    Okada S, Momoshima N (1993) Overview of tritium: characteristics, sources and problems. HealthPhys 65:595–608Google Scholar
  4. 4.
    Korolevych VY, Kim SB (2013) Relation between the tritium in continuous atmospheric release and the tritium contents of fruits and tubers. J Environ Radioact 118:113–120CrossRefGoogle Scholar
  5. 5.
    Chae JS, Lee SK, Kim Y, Lee JM, Cho HJ, Cho YW, Yun JY (2011) Distribution of tritium in water vapour and precipitation around Wolsung nuclear power plant. Radiat Prot Dosim 146:1–4CrossRefGoogle Scholar
  6. 6.
    Popoaca S, Bucur C, Simionov V (2014) Determination of 3H and 14C in organic sample after separation through combustion method. J Energy Power Eng 8:1687–1694Google Scholar
  7. 7.
    International Atomic Energy Agency (2004) Management of waste containing tritium and carbon-14. Technical Reports Series, No. 421, Vienna. https://www-pub.iaea.org/MTCD/Publications/PDF/TRS421_web.pdf. Accessed 29 Sept 2016
  8. 8.
    Calmon P, Laplace JG (2010). Radionuclide fact sheet, tritium and the environment. https://www.irsn.fr/EN/Research/publications-documentation/radionuclides-sheets/environment/Documents/Tritium_UK.pdf. Accessed 01 Dec 2016
  9. 9.
    Dulia G, Varlam C, Shnawaw M (2018) 18 years of continuous observation of tritium and atmospheric precipitation in Ramnicu Valcia (Romania): time series experiment. J Environ Radioact 105–110Google Scholar
  10. 10.
    International Atomic Energy Agency (2010) Good practices in heavy water reactor operation. IAEA Tecdoc, No. 1650, Vienna. https://wwwpub.iaea.org/MTCD/Publications/PDF/te_1650_web.pdf. Accessed 18 Sept 2016
  11. 11.
    Boyer C, Vichot L, Fromm M, Losset Y, Froux F, Guétat P, Badot PM (2009) Tritium in plants: a review of current knowledge. Environ Exp Bot 67:34–51CrossRefGoogle Scholar
  12. 12.
    IAEA EMRAS, Tritium and C-14 working group (2007) EMRAS: modelling the transfer of tritium and C-14 to biota and man, notes of the ninth working group meeting Vienna, Austria. https://www-ns.iaea.org/downloads/rw/projects/emras/tritium/minutes-ninth-meeting.pdf. Accessed 09 Jan 2015
  13. 13.
    Galeriu D, Melintescu A, Strack S, Atarashi-Andoh M, Kim SB (2013) An overview of organically bound tritium experiments in plants following a short atmospheric HTO exposure. J Environ Radioact 118:40–56CrossRefGoogle Scholar
  14. 14.
    Diabate S, Strack S (1993) Organically bound tritium. Health Phys 65:698–712CrossRefGoogle Scholar
  15. 15.
    Belot Y, Guenot J (1984) Assimilation of tritium in photosynthesizing leaves exposed to HTO. Health Phys 47:849–855CrossRefGoogle Scholar
  16. 16.
    Sweet CW, Murphy CE (1984) Tritium deposition in pine trees and soil from atmospheric releases of molecular tritium. Environ Sci Technol 18:358–361CrossRefGoogle Scholar
  17. 17.
    Brown RM (1988) Assessment of the significance of organically-bound tritium in environmental materials. Report AECL-CRNL/INFO-0283. https://inis.iaea.org/collection/NCLCollectionStore/_Public/21/049/21049478.pdf
  18. 18.
    Brown RM (1995) The measurement of tritium in Canadian food items. Report AECL-CRNL/INFO-0499, AECL Project No. 3.135.1. https://inis.iaea.org/collection/NCLCollectionStore/_Public/27/050/27050922.pdf. Accessed 17 Oct 2017
  19. 19.
    Pointurier F, Baglan N, Alanic G, Chiappini R (2003) Determination of organically bound tritium background level in biological samples from a wide area in the south-west of France. J Environ Radioact 68:171–189CrossRefGoogle Scholar
  20. 20.
    Baglan N, Alanic G, Le Meignen R, Pointurier F (2011) A follow up of the decrease of non-exchangeable organically bound tritium levels in the surroundings of a nuclear research center. J Environ Radioact 102:695–702CrossRefGoogle Scholar
  21. 21.
    Baglan N, Kim SB, Cossonnet Croudace I W, Fournier M, Galeriu D, Warwick P (2013) Organically bound tritium behavior and analysis. Outcomes of the seminar held in Balaruc-les-Bains in May 2012. Radioprotection 48:127–144CrossRefGoogle Scholar
  22. 22.
    Kim SB, Roche J (2013) Empirical insights and considerations for the OBT inter laboratory comparison of environmental samples. J Environ Radioact 122:79–85CrossRefGoogle Scholar
  23. 23.
    Kim SB, Olfert J, Baglan N, St-Amant N, Carter B, Clark I, Bucur C (2015) Canadian inter-laboratory organically bound tritium (OBT) analysis exercise. J Environ Radioact 150:236–241CrossRefGoogle Scholar
  24. 24.
    IAEA-BIOMASS-3 (2003) Modeling of environmental transport of tritium in the vicinity of long-term atmosphere and sub-surface sources. http://www-pub.iaea.org/MTCD/Publications/PDF/Biomass3_web.pdf. Accessed 22 Dec 2016
  25. 25.
    Lim JM, Kang MJ, Chung KH, Kim CJ, Choi GS (2014) Application of a high-temperature tube furnace and liquid scintillation counter for radioactivity determination of 14C and 3H in solid waste samples. J Radioanal Nucl Chem.  https://doi.org/10.1007/s10967-014-3425-2
  26. 26.
    Pointurier F, Baglan N, Alanic A, Chiappini R (2002) An improved method for the determination of low-level non-exchangeable organically bound tritium in biological samples.léoprotection—Colloques 37:967–972Google Scholar
  27. 27.
    Storer AD (1984) A simple high volume ashing procedure for determining soil organic matter. Commun Soil Sci Plant Anal 15:759–772CrossRefGoogle Scholar
  28. 28.
    D’Souza RS, Nayak RS, Kamath S, Mohan MP, Seraje B, Shetty T, Kumara SK, Narayana B, Dileep BN, Ravi PM, Karunakara N (2017) Performance evaluation of sample oxidation system for carbon 14 determination in environmental matrices. In: Conference proceedings. National conference on Radiation Protection, pp 8–11Google Scholar
  29. 29.
    Application note: Liquid Scintillation (2014) Use and preparation of quench curve in liquid scintillation counting. PerkinElmer, USA. https://www.perkinelmer.com/liquidscintillation/images/APP_Use-and-Preparation-of-Quench-Curves-in-LSC_tcm151-171749.pdf. Accessed 29 March 2018
  30. 30.
    Vartti V (2009) Optimizing the counting conditions for carbon 14 for the sample. Adv Liq Scintill Spectrom 293–298Google Scholar
  31. 31.
    Warwick P, Croudace IW, Marsh RM, Baglan N, Kim SB (2018) A new reference material for tritium organic molecules in sediment: results of an international inter- comparison exercise. Geostand Geoanaly Res 42:253–262CrossRefGoogle Scholar
  32. 32.
    Baglan N, Cossonnet C, Roche E, Kim SB, Croudace I, Warwick P (2018) Feedback of the third inter- laboratory exercise organized on wheat in the framework of the OBT working group. J Environ Radioact 181:52–61CrossRefGoogle Scholar
  33. 33.
    Baburajan A, Sudheendran V, Rao DD, Hegde AG, (2008) Standardized procedures for estimation of OBT and 14C in biological samples using an automatic sample oxidation system. in: NSE-16:137–141Google Scholar
  34. 34.
    International Atomic Energy Agency (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and fresh water environment. Technical Reports Series, No. 472, Vienna. https://www-pub.iaea.org/mtcd/publications/pdf/trs472_web.pdf. Accessed 18 March 2017

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • S. Rashmi Nayak
    • 1
  • Renita Shiny D’Souza
    • 1
  • S. Srinivas Kamath
    • 1
  • M. P. Mohan
    • 1
  • S. Bharath
    • 1
  • Trilochana Shetty
    • 1
  • K. Sudeep Kumara
    • 1
  • B. Narayana
    • 1
  • B. N. Dileep
    • 2
  • P. M. Ravi
    • 3
    • 4
  • N. Karunakara
    • 1
    Email author
  1. 1.Centre for Advanced Research in Environmental Radioactivity (CARER), Mangalore UniversityMangalagangothriIndia
  2. 2.Environmental Survey LaboratoryKaiga Generating StationKaigaIndia
  3. 3.Health Physics DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia
  4. 4.Homi Bhabha National Institute (HBNI)Anushaktinagar, MumbaiIndia

Personalised recommendations