Advertisement

Distributions of 137Cs in sediments of a crater lake: results from Baengnokdam of Mt. Halla, Jeju Island

  • Jung-Seok Chae
  • Tae-Hoon KimEmail author
  • Min-Young Lee
  • Byung-Chan Song
  • Seok-Hyung Koh
Article
  • 20 Downloads

Abstract

Vertical and horizontal distributions of 137Cs were investigated in sediment cores of the crater lake, Baengnokdam of Mt. Halla, Korea. The activities of 137Cs in sediments were in the range of minimum detectable activity 0.2–214 Bq kg−1 in the 0–100 cm layer. The inventories of 137Cs were in the range of 7.4–29.7 kBq m−2. The higher total inventories of 137Cs were observed in the middle of Baengnokdam of Mt. Halla, indicating that higher 137Cs in soil sediments of the middle of Baengnokdam of Mt. Halla can be strongly adsorbed on mud.

Keywords

Sediment 137Cs Mud Grain size Organic context Hydraulic conductivity 

Notes

Acknowledgements

This research was supported by the 2018 scientific promotion program funded by Jeju National University.

References

  1. 1.
    Yoshimura K, Onda Y, Fukushima T (2014) Sediment particle size and initial radiocesium accumulation in ponds following the Fukushima DNPP accident. Sci Rep 4:4514PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Frissel MJ, Pennders R (1983) Models for the accumulation and migration of 90Sr, 137 Cs, 239,240Pu and 241Am in the upper layer of soils. In: Coughtrey PJ (ed) Ecological aspects of radionuclide release. Blackwell, Oxford, pp 63–72Google Scholar
  3. 3.
    Livens FR, Rimmer DL (1988) Physico-chemical controls on artificial radionuclides in soil. Soil Use Manag 4:63–69CrossRefGoogle Scholar
  4. 4.
    Ritchie JC, Mchenry JR (1990) Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns. J Environ Qual 19:215–233CrossRefGoogle Scholar
  5. 5.
    He Q, Walling DE, Owens PN (1996) Interpreting the 137Cs profiles observed in several small lakes and reservoirs in southern England. Chem Geol 129:115–131CrossRefGoogle Scholar
  6. 6.
    Santschi PH, Bolhalder S, Zingg S, Luck A, Farrenkothen K (1990) The self-cleaning capacity of surface waters after radioactive fallout. Evidence from European water after Chernobyl, 1986-1988. Environ Sci Technol 24(4):519–527CrossRefGoogle Scholar
  7. 7.
    Davidson W, Spezanno P, Hilton J (1993) Remobilization of caesium from freshwater sediments. J Environ Radioact 19:109–124CrossRefGoogle Scholar
  8. 8.
    Fujiyoshi R, Sawamura S (2004) Mesoscale variability of vertical profiles of environmental radionuclides (40K, 226Ra, 210Pb and 137Cs) in temperate forest soils in Germany. Sci Total Environ 320(2–3):177–188PubMedCrossRefGoogle Scholar
  9. 9.
    Hrachowitz M, Maringer FJ, Steineder C, Gerzabek MH (2005) Soil redistribution model for undisturbed and cultivated sites based on Chernobyl-derived cesium-137 fallout. J Environ Qual 34(4):1302–1310PubMedCrossRefGoogle Scholar
  10. 10.
    Särkkä J, Keskitalo A, Luukko A (1996) Temporal changes in concentration of radiocaesium in lake sediment and fish of southern Finland as related to environmental factors. Sci Total Environ 191(1–2):125–136PubMedCrossRefGoogle Scholar
  11. 11.
    Du M, Yang H, Chang Q, Minami K, Hatta T (1998) Caesium-137 fallout depth distribution in different soil profiles and significance for estimating soil erosion rate. Soil Sci 3(1):23–33CrossRefGoogle Scholar
  12. 12.
    Nathalie Kruyts, Bruno Delvaux (2002) Soil organic horizon as a major source for radiocesium biorecycling in forest ecosystems. J Environ Radioact 58:175–190CrossRefGoogle Scholar
  13. 13.
    Ilus E, Saxen R (2005) Accumulation of Chernobyl-derived Cs-137 in bottom sediments of some Finnish lakes. J Environ Radioact 82:199–221PubMedCrossRefGoogle Scholar
  14. 14.
    Navas A, Machín J, Soto J (2005) Assessing soil erosion in a Pyrenean mountain catchment using GIS and fallout 137Cs. Agric Ecosyst Environ 105(3):493–506CrossRefGoogle Scholar
  15. 15.
    He Q, Walling DE (1997) The distribution of fallout 137Cs and 210Pb in undisturbed and cultivated soils. Appl Radiat Isot 48:667–690CrossRefGoogle Scholar
  16. 16.
    Kruse-Irmer S, Giani L (2003) Verical distribution and bioavailability of 137Cs in organic and mineral soils. J Plant Soil Sci 166:635–641CrossRefGoogle Scholar
  17. 17.
    DeLaune RD, Patrick WH Jr, Buresh RJ (1987) Sedimentation rates determined by Cs-137 dating in a rapidly accreting salt marsh. Nature 275:532–533CrossRefGoogle Scholar
  18. 18.
    Ashley GM, Moritz LE (1979) Determination of lacustrine sedimentation rates by radiactive fallout (137Cs). Can J Earth Sci 16(4):965–970CrossRefGoogle Scholar
  19. 19.
    Froehlich W, Walling DE (1994) Use of Chernobyl-derived radiocaesium to investigate contemporary overbank sedimentation on the flood plains of Carpathian rivers. IAHS Publ Ser Proc Rep Int Assoc Hydrol Sci 224:161–170Google Scholar
  20. 20.
    Goodbred SL, Kuehl SA (1998) Floodplain processes in the Bengal Basin and the storage of Gangese Brahmaputra river sediment: an accretion study using Cs-137 and Pb-210 geochronology. Sedim Geol 121:239–258CrossRefGoogle Scholar
  21. 21.
    Park KH, Cho DL, Kim JC (2000) Geological report of Moseulpo-Hanlim Sheet. Korea Institute of Geology, Mining and Materials, Daejeon, KoreaGoogle Scholar
  22. 22.
    Park KH, Cho DL, Kim YB, Kim JC, Cho BW, Jang YN, Lee HY (2000b) Geologic report of the Seogwipo-Hahyori Sheet. Jeju Provincial GovernmentGoogle Scholar
  23. 23.
    Park KH, Song KY, Hwang JH, Lee BJ, Cho DL, Kim JC, Choi HI (1998) Geological report of the Cheju-Aewol sheet. Cheju Provincial GovernmentGoogle Scholar
  24. 24.
    Mair A, El-Kadi AI, Ha K, Koh GW (2013) Temporal and spatial variability of rainfall and climate trend on Jeju Island. Geosci J 17(1):75–85CrossRefGoogle Scholar
  25. 25.
    Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38CrossRefGoogle Scholar
  26. 26.
    Russell MBF (1949) Methods of measuring soil structure and aeration. Soil Sci 68(1):25–36CrossRefGoogle Scholar
  27. 27.
    Richards LA (1954) Diagnosis and improvement of saline and alkali soils. Agriculture Handbook of soil science. No. 60, USDA, Washington, DCGoogle Scholar
  28. 28.
    Yim SA, Chae JS, Byun JI, Ko SH (2018) Characteristics of artificial radionuclides in sedimentary soil cores from a volcanic crater lake. J Environ Radioact 192:532–542PubMedCrossRefGoogle Scholar
  29. 29.
    Tsukada H, Hasegawa H, Hisamatsu SI, Yamasaki SI (2002) Transfer of 137Cs and stable Cs from paddy soil to polished rice in Aomori, Japan. J Environ Radioact 59(3):351–363CrossRefGoogle Scholar
  30. 30.
    Vukašinović I, Todorović D, Đorđević A, Rajković MB, Pavlović VB (2013) Depth distribution of 137Cs in anthrosol from the experimental field “Radmilovac” near Belgrade, Serbia. Arh Hig Rada Toksikol 64(3):425–430PubMedCrossRefGoogle Scholar
  31. 31.
    Fujiyoshi R, Yamaguchi T, Takekoshi N, Okamoto K, Sumiyoshi T, Kobal I, Vaupotič J (2011) Tracing depositional consequences of environmental radionuclides (137Cs and 210Pb) in Slovenian forest soils. Open Geosci 3(3):291–301CrossRefGoogle Scholar
  32. 32.
    Koh SH (2010) Studies on the soil sediment characteristics using 137Cs in the crater Lake, Baengnokdam of Mt, Halla. Ph.D. Thesis, Jeju National UniversityGoogle Scholar
  33. 33.
    Fang HJ, Yang XP, Zhang XP, Liang AZ (2006) Using 134Cs tracer technique to evaluate erosion and deposition of black soil in Northeast China. Soil Sci China 16(2):201–209Google Scholar
  34. 34.
    Yamada M, Nagaya Y (2000) 239+240Pu and 137Cs in sediments from Tokyo Bay: distribution and inventory. J Radioanal Nucl Chem 245(2):273–279CrossRefGoogle Scholar
  35. 35.
    Takada M, Yamada T, Takahara T, Okuda T (2016) Spatial variation in the 137Cs inventory in soils in a mixed deciduous forest in Fukushima, Japan. J Environ Radioact 161:35–41PubMedCrossRefGoogle Scholar
  36. 36.
    Lieser KH, Steinkopff T (1989) Chemistry of radioactive cesium in the hydrosphere and in the geosphere. Radiochim Acta 46(1):39–48Google Scholar
  37. 37.
    Dumat C, Stauton S (1999) Reduced adsorption of caesium on clay minerals caused by various humic substances. J Environ Radioact 46(2):197–200CrossRefGoogle Scholar
  38. 38.
    Valcke E, Cremers A (1994) Sorption-desorption dynamics of radiocaesium in organic matter soils. Sci Total Environ 157:275–283CrossRefGoogle Scholar
  39. 39.
    Tamura T, Jacobs DG (1960) Structural implications in cesium sorption. Health Phys 2(4):391–398PubMedCrossRefGoogle Scholar
  40. 40.
    Schulz RK (1965) Soil chemistry of radionuclides. Health Phys 11(12):1317–1324PubMedCrossRefGoogle Scholar
  41. 41.
    Sawhney BL (1972) Selective sorption and fixation of cations by mud minerals. Mud Miner 20:93–100Google Scholar
  42. 42.
    Brisbin IL Jr, Beyers RJ, Dapson RW, Geiger RA, Gentry JB, Gibbons JW, Woods SK (1974) Patterns of radiocesium in the sediments of a stream channel contaminated by production reactor effluents. Health Phys 27(1):19–27PubMedCrossRefGoogle Scholar
  43. 43.
    Hird AB, Rimmer DL, Livens FR (1996) Factors affecting the sorption and fixation of caesium in acid organic soil. Eur J Soil Sci 14:97–104CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Jung-Seok Chae
    • 1
    • 2
  • Tae-Hoon Kim
    • 3
    Email author
  • Min-Young Lee
    • 3
  • Byung-Chan Song
    • 3
  • Seok-Hyung Koh
    • 4
  1. 1.Korea Institute of Nuclear SafetyDaejeonRepublic of Korea
  2. 2.School of Earth and Environmental Sciences/Research Institute of OceanographySeoul National UniversitySeoulRepublic of Korea
  3. 3.Department of Earth and Marine SciencesJeju National UniversityJejuRepublic of Korea
  4. 4.World Heritage OfficeJeju Special Self-Governing ProvinceJejuRepublic of Korea

Personalised recommendations