Advertisement

Radiation synthesis of starch-acrylic acid–vinyl sulfonic acid/multiwalled carbon nanotubes composite for the removal of 134Cs and 152+154Eu from aqueous solutions

  • Islam Mohamed AbdelmonemEmail author
  • Essam Metwally
  • Tharwat Essa Siyam
  • Farid Abou El-Nour
  • Abdel-Rahman Mahmoud Mousa
Article
  • 20 Downloads

Abstract

Starch-acrylic acid-co-vinyl sulfonic acid/multiwalled carbon nanotubes (starch-AA-VSA/f-MWCNTs) bionanocomposite was successfully synthesized using gamma radiation for initiate the grafting of AA/VSA on starch in the presence of f-MWCNTs by template polymerization technique. The structural characteristics were confirmed by FTIR, SEM, and TGA. The adsorption behaviors of bionanocomposite toward Eu(III) and Cs(I) were examined using the batch adsorption experiments. Langmuir and Freundlich’s models were used to fit the experimental data of the adsorption isotherms. Kinetic studies showed that the adsorption data followed the pseudo-second-order model. Thermodynamic studies indicated that the reaction was favorable at high temperature and endothermic process.

Keywords

Multiwall carbon nanotube Template polymerization Radiation-induced graft copolymerization Acrylic acid–vinyl sulfonic acid grafted starch Europium and Cesium removal 

Notes

Compliance with ethical standards

Conflict of interest

All authors declared no conflict of interest.

References

  1. 1.
    Famá LM, Pettarin V, Goyanes SN, Bernal CR (2011) Carbohydr Polym 83(3):1226–1231Google Scholar
  2. 2.
    Swain SK, Pradhan AK, Sahu HS (2013) Carbohydr Polym 94(1):663–668PubMedGoogle Scholar
  3. 3.
    Prusty G, Das R, Swain SK (2014) Compos Part B Eng 62:236–241Google Scholar
  4. 4.
    Cheng J, Zheng P, Zhao F, Ma X (2013) Int J Biol Macromol 59:13–19PubMedGoogle Scholar
  5. 5.
    Yan L, Chang PR, Zheng P (2011) Carbohydr Polym 84(4):1378–1383Google Scholar
  6. 6.
    Xie F, Pollet E, Halley PJ, Avérous L (2013) Prog Polym Sci 38(10–11):1590–1628Google Scholar
  7. 7.
    Morales NJ, Candal R, Famá L, Goyanes S, Rubiolo GH (2015) Carbohydr Polym 127:291–299PubMedGoogle Scholar
  8. 8.
    Ma X, Yu J, Wang N (2008) Compos Sci Technol 68(1):268–273Google Scholar
  9. 9.
    Castrejón-Parga KY et al (2015) J Alloys Compd 615(S1):S505–S510Google Scholar
  10. 10.
    Cao X, Chen Y, Chang PR, Huneault MA (2007) J Appl Polym Sci 106(2):1431–1437Google Scholar
  11. 11.
    Yu S, Wang X, Pang H, Zhang R, Song W (2017) Chem Eng J 333:343–360.  https://doi.org/10.1016/j.cej.2017.09.163 Google Scholar
  12. 12.
    Gu P et al (2018) Environ Pollut 240:493–505PubMedGoogle Scholar
  13. 13.
    Zhao G et al (2018) Polym Chem 9:2322–2356Google Scholar
  14. 14.
    Wang X, Power E, Zhao SG, Chen C, Wang X (2018) Chem Soc Rev 47:2322–2356PubMedGoogle Scholar
  15. 15.
    Hamed MM, Holiel M, Ahmed IM (2016) Radiochim Acta 104(12):873–890Google Scholar
  16. 16.
    Olatunji MA, Khandaker MU, Mahmud HNME, Amin YM (2015) R Soc Chem 5:71658–71683Google Scholar
  17. 17.
    Aguila B et al (2016) Chem Commun 52(35):5940–5942Google Scholar
  18. 18.
    Vipin AK, Ling S, Fugetsu B (2014) Carbohydr Polym 111:477–484PubMedGoogle Scholar
  19. 19.
    Carvalho RS, Daniel-Da-Silva AL, Trindade T (2016) Part Part Syst Charact 33(3):150–157Google Scholar
  20. 20.
    Norton MV, Digiano FA, Hallen RT (1997) Water Environ Fed 69(2):244–253Google Scholar
  21. 21.
    Liang S, Li G, Tian R (2016) J Mater Sci 51(7):3513–3524Google Scholar
  22. 22.
    Mishra MM, Sand A, Mishra DK, Yadav M, Behari K (2010) Carbohydr Polym 82(2):424–431Google Scholar
  23. 23.
    Kim MK, Shanmuga Sundaram K, Anantha Iyengar G, Lee KP (2015) Chem Eng J 267:51–64Google Scholar
  24. 24.
    Siyam T, Abdel-Hamid MM, El-Naggar IM (1995) J Macromol Sci Part A 32(sup1):871–879Google Scholar
  25. 25.
    Siyam T, Ayoub R (1997) J Macromol Sci Pure Appl Chem 34(9):1727–1735Google Scholar
  26. 26.
    El-Zahhar AA, Abdel-Aziz HM, Siyam T (2007) J Macromol Sci Part A Pure Appl Chem 44(2):215–222Google Scholar
  27. 27.
    Massaoud AA, Hanafi HA, Siyam T, Saleh ZA, Ali FA (2008) Cent Eur J Chem 6(1):39–45Google Scholar
  28. 28.
    Moustafa KA, Abdel-Aziz HM, Siyam T (2008) J Radiat Res Appl Sci 1(2):233–244Google Scholar
  29. 29.
    Borai EH, Hamed MG, El-kamash AM, Siyam T, El-Sayed GO (2015) New J Chem 39(9):7409–7420Google Scholar
  30. 30.
    Abdel-Aziz HM, Hanafi HA, Abozahra SF, Siyam T (2011) Int J Polym Mater Polym Biomater 60(1):89–101Google Scholar
  31. 31.
    Farouk N, Abdel-Aziz HM, Ayoub S, Siyam T (2011) J Radioanal Nucl Chem 290(3):587–593Google Scholar
  32. 32.
    Abdel-Aziz HM, Siyam T (2011) Water Air Soil Pollut 218(1–4):165–174Google Scholar
  33. 33.
    Sallam KM, Abdel-Ghany IY, Abdel-Aziz HM, Siyam T (2011) J Radioanal Nucl Chem 289(2):647–652Google Scholar
  34. 34.
    Siyam T, Abd-Elatif ZH (1998) Sci Technol Polym Adv Mater 1:165–166Google Scholar
  35. 35.
    Sallam KM, Abdel-Aziz HM, Moustafa KA, Siyam T (2010) J Radioanal Nucl Chem 284(1):29–35Google Scholar
  36. 36.
    Guo L, Liu G, Hong RY, Li HZ (2010) Mar Drugs 8(7):2212–2222PubMedPubMedCentralGoogle Scholar
  37. 37.
    Siyam T, Abd-Elatif ZH (1999) J Macromol Sci, Pure Appl Chem 36A(3):417–428Google Scholar
  38. 38.
    Siyam T (2001) Des Monomers Polym 4(2):107–168Google Scholar
  39. 39.
    Senna MM, Siyam T, Mahdy S (2004) J Macromol Sci, Pure Appl Chem 41A(10):1187–1203Google Scholar
  40. 40.
    El-Zahhar AA, Abdel-Aziz HM, Siyam T (2005) 8th Arab international conference on polymer science & technology (Cairo-Sharm El-Shiekh, Egypt), pp 215–222Google Scholar
  41. 41.
    Siyam T (2005) 8th Arab international conference on polymer science & technology (Cairo-Sharm El-Shiekh, Egypt), pp 1–9Google Scholar
  42. 42.
    El-Zahhar AA, Abdel-Aziz HM, Siyam T (2006) J Radioanal Nucl Chem 267(3):657–664Google Scholar
  43. 43.
    Kim SJ, Park SJ, Kim SI (2004) Smart Mater Struct 13(2):317–322Google Scholar
  44. 44.
    Hussain T, Ansari M, Ranjha NM, Khan IU, Shahzad Y (2013) Sci World J 2013:1–9Google Scholar
  45. 45.
    Hemalatha P (2016) Int J Innov Res Dev 5(11):7–12Google Scholar
  46. 46.
    Yadav M et al (2012) Int J Biol Macromol 50:826–832PubMedGoogle Scholar
  47. 47.
    Geethanjali R, Subhashini S (2014) Res J Recent Sci 3:170–176Google Scholar
  48. 48.
    Tiwari A, Singh SP (2008) J Appl Polym Sci 108(2):1169–1177Google Scholar
  49. 49.
    Soleimani F, Sadeghi M, Shahsavari H (2012) Indian J Sci Technol 5(2):2041–2046Google Scholar
  50. 50.
    Singha AS, Rana AK (2011) Iran Polym J 20(11):913–929Google Scholar
  51. 51.
    Pathania D, Sharma R (2012) Adv Mater Lett 3(2):136–142Google Scholar
  52. 52.
    Lanthong P, Nuisin R, Kiatkamjornwong S (2006) Carbohydr Polym 66(2):229–245Google Scholar
  53. 53.
    Tsubokawa N (2005) Polym J 37(9):637–655Google Scholar
  54. 54.
    Wang JP, Chen YZ, Ge XW, Yu HQ (2007) Chemosphere 66(9):1752–1757PubMedGoogle Scholar
  55. 55.
    Wang W, Wang A (2010) Carbohydr Polym 80(4):1028–1036Google Scholar
  56. 56.
    Chang PR et al (2011) J Hazard Mater 186(2–3):2144–2150PubMedGoogle Scholar
  57. 57.
    Schweitzer GK, Pesterfiel LL (2010) The aqueous chemistry of the elements (Oxford, New York).  https://doi.org/10.1017/cbo9781107415324.004
  58. 58.
    Remenárová L et al (2014) Nova Biotechnol Chim 13(1):57–72Google Scholar
  59. 59.
    Gök C (2017) Int J Chem Eng Appl 8(5):334–339Google Scholar
  60. 60.
    Amini M, Younesi H, Bahramifar N (2013) J Environ Eng 139(3):410–421Google Scholar
  61. 61.
    Sun J et al (2014) Environ Eng Manag J 13(10):2551–2559Google Scholar
  62. 62.
    Suguna M, Siva Kumar N (2013) Indian J Chem Technol 20(1):57–69Google Scholar
  63. 63.
    Alqadami AA, Naushad M, Abdalla MA, Khan MR, Alothman ZA (2016) J Chem Eng Data 61(11):3806–3813Google Scholar
  64. 64.
    Xu L et al (2017) Bioinorg Chem Appl 2017:1–9Google Scholar
  65. 65.
    Liu LE et al (2012) BioResources 7(3):3555–3572Google Scholar
  66. 66.
    Achmad A, Kassim J, Suan TK, Amat RC, Seey TL (2012) J Phys Sci 23(1):1–13Google Scholar
  67. 67.
    Haroon H et al (2016) Korean J Chem Eng 33(10):2898–2907Google Scholar
  68. 68.
    Chen H, Li J, Shao D, Ren X, Wang X (2012) Chem Eng J 210:475–481Google Scholar
  69. 69.
    Rainert KT, Nunes HCA, Gonçalves MJ, Tavares BLB (2017) Desalin Water Treat 86:203–212Google Scholar
  70. 70.
    Deb AKS et al (2018) J Hazard Mater 345:63–75PubMedGoogle Scholar
  71. 71.
    Sun Y et al (2016) Environ Sci Technol 50(8):4459–4467PubMedGoogle Scholar
  72. 72.
    Yavari R, Huang YD, Ahmadi SJ (2011) J Radioanal Nucl Chem 287(2):393–401Google Scholar
  73. 73.
    Du Z, Jia M, Wang X (2013) J Radioanal Nucl Chem 298(1):167–177Google Scholar
  74. 74.
    Ye X et al (2009) Colloids Surf A Physicochem Eng Asp 342(1–3):76–83Google Scholar
  75. 75.
    El-Kamash AM (2008) J Hazard Mater 151(2–3):432–445PubMedGoogle Scholar
  76. 76.
    Yang S, Han C, Wang X, Nagatsu M (2014) J Hazard Mater 274:46–52PubMedGoogle Scholar
  77. 77.
    Prodromou M, Pashalidis I (2016) Desalin Water Treat 57(11):5079–5088Google Scholar
  78. 78.
    Rao GP, Lu C, Su F (2007) Sep Purif Technol 58:224–231Google Scholar
  79. 79.
    Hassan R, Gobouri A, Zaafarany I (2013) Adv Biosens Bioelectron 2(3):47–56Google Scholar
  80. 80.
    Huang S et al (2018) Chem Eng J 353(July):157–166Google Scholar
  81. 81.
    Srivastava S (2013) Adv Mater Lett 4(1):2–8Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Islam Mohamed Abdelmonem
    • 1
    Email author
  • Essam Metwally
    • 1
  • Tharwat Essa Siyam
    • 1
  • Farid Abou El-Nour
    • 1
  • Abdel-Rahman Mahmoud Mousa
    • 2
  1. 1.Nuclear Chemistry Department, Hot Laboratories CentreEgyptian Atomic Energy AuthorityCairoEgypt
  2. 2.Chemistry Department, Faculty of ScienceAin Shams UniversityAbassia, CairoEgypt

Personalised recommendations