Advertisement

Synthesis of magnetic graphene oxide nanoribbons composite for the removal of Th(IV) from aqueous solutions

  • Peng Wu
  • Yun Wang
  • Xuewen Hu
  • Dingzhong Yuan
  • Yan Liu
  • Zhirong Liu
Article
  • 12 Downloads

Abstract

Functionalized magnetic graphene oxide nanoribbons (MGONRs) composite material was synthesized by hydrothermal treatment method using graphene oxide nanoribbons as raw material, which was formed by longitudinal unzipping of multi-walled carbon nanotubes in oxidizing environment. The morphology and structural properties of MGONRs were characterized by SEM, FT-IR, XRD and VSM and thorium adsorption behavior on MGONRs was investigated. The results showed that thorium adsorption on MGONRs was pH-dependent, endothermic and spontaneous. The adsorption process followed pseudo-second order and Freundlich isotherm model with rapid solid–liquid separation. MGONRs could have practical application in separation and recovery of thorium from aqueous solutions.

Keywords

Graphene oxide nanoribbons Magnetic composite material Thorium Adsorption 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21601033, 21866006, 11875105, 21661003, 11705027), and Jiangxi Province Key Subjects Academy and Technique Leaders Funding Project (20172BCB22020), Natural Science Funds for Distinguished Young Scholar of Jiangxi Province (20171BCB23067), Open Project Foundation of Nuclear Technology Application Ministry of Education Engineering Research Center (East China University of Technology) (HJSJYB2016-6), Open Project Foundation of Stake key Laboratory of Nuclear Resources and Environment (East China University of Technology) (NRE1509).

References

  1. 1.
    García C, Rosales J, García L, Muñoz A, Rosales F, Brayner C, Pérez J (2013) Evaluation of uranium thorium and plutonium thorium fuel cycles in a very high temperature hybrid system. Prog Nucl Energy 66:61–72CrossRefGoogle Scholar
  2. 2.
    Arogunjo AM, Höllriegl V, Giussani A, Leopold K, Gerstmann U, Veronese I, Oeh U (2009) Uranium and thorium in soils, mineral sands, water and food samples in a tin mining area in Nigeria with elevated activity. J Environ Radioact 99(3):232–240CrossRefGoogle Scholar
  3. 3.
    Bacquart T, Bradshaw K, Frisbie S, Mitchell E, Springston G, Defelice J, Dustin H, Sarkar B (2012) A survey of arsenic, manganese, boron, thorium, and other toxic metals in the groundwater of a West Bengal, India neighbourhood. Metallomics 4(7):653–659CrossRefPubMedGoogle Scholar
  4. 4.
    Wang L, Zhong B, Liang T, Xing B, Zhu Y (2016) Atmospheric thorium pollution and inhalation exposure in the largest rare earth mining and smelting area in China. Sci Total Environ 572:1–8CrossRefPubMedGoogle Scholar
  5. 5.
    Wang M, Tao X, Song X (2011) Effect of pH, ionic strength and temperature on sorption characteristics of Th(IV) on oxidized multiwalled carbon nanotubes. J Radioanal Nucl Chem 288(3):859–865CrossRefGoogle Scholar
  6. 6.
    Schierz A, Zänker H (2009) Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environ Pollut 157(4):1088–1094CrossRefPubMedGoogle Scholar
  7. 7.
    Romanchuk AY, Slesarev AS, Kalmykov SN, Kosynkin DV, Tour JM (2013) Graphene oxide for effective radionuclide removal. Phys Chem Chem Phys 15(7):2321–2327CrossRefPubMedGoogle Scholar
  8. 8.
    Hirsch A (2009) Unzipping carbon nanotubes: a peeling method for the formation of graphene nanoribbons. Angew Chem Int Ed 48(36):6594–6596CrossRefGoogle Scholar
  9. 9.
    Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240):877–880CrossRefPubMedGoogle Scholar
  10. 10.
    Camposdelgado J, Romoherrera JM, Jia X, Cullen DA, Muramatsu H, Kim YA, Hayashi T, Ren Z, Smith DJ, Yu O (2008) Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano Lett 8(9):2773–2778CrossRefGoogle Scholar
  11. 11.
    Jiao L, Wang X, Diankov G, Wang H, Dai H (2010) Facile synthesis of high-quality graphene nanoribbons. Nat Nanotechnol 5(5):321–325CrossRefPubMedGoogle Scholar
  12. 12.
    Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867):1229–1232CrossRefPubMedGoogle Scholar
  13. 13.
    Tapasztó L, Dobrik G, Lambin P, Biró LP (2008) Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat Nanotechnol 3(7):397–401CrossRefPubMedGoogle Scholar
  14. 14.
    Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240):872–876CrossRefPubMedGoogle Scholar
  15. 15.
    Higginbotham AL, Kosynkin DV, Sinitskii A, Sun Z, Tour JM (2010) Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 4(4):2059–2069CrossRefPubMedGoogle Scholar
  16. 16.
    Wang Y, Wang Z, Gu Z, Yang J, Liao J, Yang Y, Liu N, Tang J (2015) Uranium(VI) sorption on graphene oxide nanoribbons derived from unzipping of multiwalled carbon nanotubes. J Radioanal Nucl Chem 304(3):1–9Google Scholar
  17. 17.
    Wang Y, Wang Z, Ran R, Yang J, Liu N, Liao J, Yang Y, Tang J (2015) Synthesis of amidoximated graphene oxide nanoribbons from unzipping of multiwalled carbon nanotubes for selective separation of uranium(VI). RSC Adv 5(108):89309–89318CrossRefGoogle Scholar
  18. 18.
    Gado MA (2018) Sorption of thorium using magnetic graphene oxide polypyrrole composite synthesized from natural source. Sep Sci Technol 53(13):2016–2033CrossRefGoogle Scholar
  19. 19.
    Hritcu D, Humelnicu D, Dodi G, Popa MI (2012) Magnetic chitosan composite particles: evaluation of thorium and uranyl ion adsorption from aqueous solutions. Carbohydr Polym 87(2):1185–1191CrossRefGoogle Scholar
  20. 20.
    Mirzabe GH, Keshtkar AR (2015) Application of response surface methodology for thorium adsorption on PVA/Fe3O4/SiO2/APTES nanohybrid adsorbent. J Ind Eng Chem 26:277–285CrossRefGoogle Scholar
  21. 21.
    Wu L, Ye Y, Liu F, Tan C, Liu H, Wang S, Wang J, Yi W, Wu W (2013) Organo-bentonite-Fe3O4 poly(sodium acrylate) magnetic superabsorbent nanocomposite: synthesis, characterization, and Thorium(IV) adsorption. Appl Clay Sci 83–84:405–414CrossRefGoogle Scholar
  22. 22.
    Liu P, Qi W, Du YF, Li Z, Wang J, Bi JJ, Wu WS (2014) Adsorption of thorium(IV) on magnetic multi-walled carbon nanotubes. Sci China Chem 57(11):1483–1490CrossRefGoogle Scholar
  23. 23.
    Yang SK, Tan N, Yan XM, Chen F, Long W, Lin YC (2013) Thorium(IV) removal from aqueous medium by citric acid treated mangrove endophytic fungus Fusarium sp. #ZZF51. Mar Pollut Bull 74(1):213–219CrossRefPubMedGoogle Scholar
  24. 24.
    Zhu HY, Fu YQ, Jiang R, Jiang JH, Xiao L, Zeng GM, Zhao SL, Wang Y (2011) Adsorption removal of congo red onto magnetic cellulose/Fe3O4/activated carbon composite: equilibrium, kinetic and thermodynamic studies. Chem Eng J 173(2):494–502CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Peng Wu
    • 3
  • Yun Wang
    • 1
    • 2
    • 3
  • Xuewen Hu
    • 3
  • Dingzhong Yuan
    • 2
  • Yan Liu
    • 2
  • Zhirong Liu
    • 2
  1. 1.Engineering Research Center of Nuclear Technology Application (East China University of Technology)Ministry of EducationNanchangChina
  2. 2.State Key Laboratory of Nuclear Resources and EnvironmentEast China University of TechnologyNanchangChina
  3. 3.School of Nuclear Science and EngineeringEast China University of TechnologyNanchangChina

Personalised recommendations