Advertisement

Preparation of amino-modified hydroxyapatite and its uranium adsorption properties

  • Yurun Feng
  • Baoshan Ma
  • Xue Guo
  • Haibin Sun
  • Yujun Zhang
  • Hongyu Gong
Article
  • 10 Downloads

Abstract

The amino-hydroxyapatite (HAP-NH2) was synthesized by grafted amino functional groups onto hydroxyapatite. The uranium adsorption performance of HAP-NH2 was studied under different conditions. The results indicated that HAP-NH2 possessed high adsorption capacity (96 mg g−1), wide pH values range (2–8) and fast adsorption rate (20 min). The adsorption kinetic and adsorption isotherm models of HAP-NH2 revealed that the uranium adsorption process was belonged to chemical adsorption. Furthermore, the main forces between uranium ions and HAP-NH2 were attributed to hydroxyl, amino and phosphorous functional groups.

Keywords

Hydroxyapatite Amino modified Uranium Adsorption 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51702189, 51802176, 51472146), Shandong Provincial Natural Science Foundation (Grant Nos. ZR2017BEM033, ZR2017QEM002), and Science and Technology Development Project of Shandong Province (2014GZX201008).

References

  1. 1.
    Wang X, Liu Y, Sun Z et al (2017) Heap bioleaching of uranium from low-grade granite-type ore by mixed acidophilic microbes. J Radioanal Nucl Chem 314(1):251–258CrossRefGoogle Scholar
  2. 2.
    Min X, Li Y, Ke Y et al (2017) Fe-FeS2 adsorbent prepared with iron powder and pyrite by facile ball milling and its application for arsenic removal. Water Sci Technol 76(1):192–200CrossRefPubMedGoogle Scholar
  3. 3.
    Ke Y, Peng N, Xue K et al (2018) Sulfidation behavior and mechanism of zinc silicate roasted with pyrite. Appl Surf Sci 435:1011–1019CrossRefGoogle Scholar
  4. 4.
    Wang X, Li P, Liu Y et al (2018) Uranium bioleaching from low-grade carbonaceous-siliceous-argillaceous type uranium ore using an indigenous Acidithiobacillus ferrooxidans. J Radioanal Nucl Chem 317(2):1033–1040CrossRefGoogle Scholar
  5. 5.
    Chai LY, Wang X, Wang HY et al (2017) Formation of one-dimensional composites of poly(m-phenylenediamine)s based on Streptomyces, for adsorption of hexavalent chromium. Int J Environ Sci Technol 15(7):1–12Google Scholar
  6. 6.
    Wang T, Zhang L, Li C et al (2015) Synthesis of core-shell magnetic Fe3O4@poly(m-phenylenediamine) particles for chromium reduction and adsorption. Environ Sci Technol 49(9):5654–5662CrossRefPubMedGoogle Scholar
  7. 7.
    Bogya ES, Barabás R, Csavdári A et al (2009) Hydroxyapatite modified with silica used for sorption of copper. Chem Pap 63(5):568–573CrossRefGoogle Scholar
  8. 8.
    Handley-Sidhu S, Renshaw JC, Moriyama S et al (2011) Uptake of Sr2+ and Co2+ into biogenic hydroxyapatite: implications for biomineral ion exchange synthesis. Environ Sci Technol 45(16):6985–6990CrossRefPubMedGoogle Scholar
  9. 9.
    Feng Y, Gong JL, Zeng GM et al (2010) Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chem Eng J 162(2):487–494CrossRefGoogle Scholar
  10. 10.
    Baybas D, Ulusoy U (2012) Polyacrylamide–hydroxyapatite composite: preparation, characterization and adsorptive features for uranium and thorium. J Solid State Chem 194:1–8CrossRefGoogle Scholar
  11. 11.
    Li S, Bai H, Wang J et al (2012) In situ grown of nano-hydroxyapatite on magnetic CaAl-layered double hydroxides and its application in uranium removal. Chem Eng J 193:372–380CrossRefGoogle Scholar
  12. 12.
    Chattanathan SA, Clement TP, Kanel SR et al (2013) Remediation of uranium-contaminated groundwater by sorption onto hydroxyapatite derived from catfish bones. Water Air Soil Pollut 224(2):1429CrossRefGoogle Scholar
  13. 13.
    Yokoi T, Kubota Y, Tatsumi T (2012) Amino-functionalized mesoporous silica as base catalyst and adsorbent. Appl Catal A 421–422(15):14–37CrossRefGoogle Scholar
  14. 14.
    Hao S, Zhong Y, Pepe F, Zhu W (2012) Adsorption of Pb2+, and Cu2+, on anionic surfactant-templated amino-functionalized mesoporous silicas. Chem Eng J 189–190(2):160–167CrossRefGoogle Scholar
  15. 15.
    Duan S, Wang Y, Liu X et al (2017) Removal of U(VI) from aqueous solution by amino functionalized flake graphite prepared by plasma treatment. ACS Sustain Chem Eng 5(5):3597–4477CrossRefGoogle Scholar
  16. 16.
    Sert S, Eral M (2010) Uranium adsorption studies on aminopropyl modified mesoporous sorbent (NH2-MCM-41) using statistical design method. J Nucl Mater 406(3):285–292CrossRefGoogle Scholar
  17. 17.
    Guo X, Feng Y, Ma L et al (2017) Phosphoryl functionalized mesoporous silica for uranium adsorption. Appl Surf Sci 402:53–60CrossRefGoogle Scholar
  18. 18.
    Sánchezenríquez J, Reyesgasga J (2013) Obtaining Ca(H2PO4)2·H2O, monocalcium phosphate monohydrate, via monetite from brushite by using sonication. Ultrason Sonochem 20(3):948–954CrossRefGoogle Scholar
  19. 19.
    Rajendran K, Keefe CD (2010) Growth and characterization of calcium hydrogen phosphate dihydrate crystals from single diffusion gel technique. Cryst Res Technol 45(9):939–945CrossRefGoogle Scholar
  20. 20.
    Wang G, Wang X, Chai X et al (2010) Adsorption of uranium (VI) from aqueous solution on calcined and acid-activated kaolin. Appl Clay Sci 47(3–4):448–451CrossRefGoogle Scholar
  21. 21.
    Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 38(11):2221–2295CrossRefGoogle Scholar
  22. 22.
    Frendlich HMA (1906) Concerning adsorption in solutions. J Phys Chem 57:385Google Scholar
  23. 23.
    Zhao Y, Liu C, Feng M et al (2010) Solid phase extraction of uranium (VI) onto benzoylthiourea anchored activated carbon. J Hazard Mater 176(1–3):119–124CrossRefPubMedGoogle Scholar
  24. 24.
    Ünlü N, Ersoz M (2006) Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions. J Hazard Mater 136(2):272–280CrossRefPubMedGoogle Scholar
  25. 25.
    Shao D, Jiang Z, Wang X et al (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO2 2+ from aqueous solution. J Phys Chem B 113(4):860CrossRefPubMedGoogle Scholar
  26. 26.
    Sun Y, Yang S, Sheng G et al (2012) The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes. J Radioanal Nucl Chem 105:40–47Google Scholar
  27. 27.
    Mellah A, Chegrouche S, Barkat M (2006) The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J Colloid Interface Sci 296(2):434–441CrossRefPubMedGoogle Scholar
  28. 28.
    Chen Z, Zeng G, Tang C (2009) Adsorption of uranium from wastewater by hydroxyapatite. Met Min 5:135–137Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education)Shandong UniversityJinanPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringShandong University of TechnologyZiboPeople’s Republic of China
  3. 3.Shandong Sanshan Highway Engineering Supervision Consulting Co. Ltd.LiaochengPeople’s Republic of China

Personalised recommendations