Advertisement

A study of various self deposition solutions for 210Po analysis in tap water

  • Dimitrios C. XarchoulakosEmail author
  • Konstantina Kehagia
Article
  • 32 Downloads

Abstract

The purpose of the present study was to examine the use of various inorganic acids as self deposition solutions and their macroscopic effects on nickel plates which could potentially deteriorate polonium analysis in tap water. 0.5 M, 2 M and 0.1 M hydrochloric acid solutions in addition to 0.1 M and 0.5 M solutions of nitric, hydrofluoric, hydrobromic, hydriodic, sulfuric, phosphoric, sulfamic and perchloric acid were studied and compared. Polonium was plated via self deposition while the chemical recoveries were determined by alpha spectrometry.

Keywords

210Po analysis Self deposition solutions Nickel plates Alpha spectrometry 

References

  1. 1.
    Maxwell SL, Culligan BK, Hutchinson JB, Utsey RC, McAlister DR (2013) Rapid determination of 210Po in water samples. J Radioanal Nucl Chem 298(3):1977–1989CrossRefGoogle Scholar
  2. 2.
    Skwarzek B, Fadisiak J (2007) Bioaccumulation of polonium 210Po in marine birds. J Environ Radioact 93:119–126CrossRefGoogle Scholar
  3. 3.
    Brown JE, Gjelsvik R, Roos P, Kalas JA, Outola I, Holm E (2011) Levels and transfer of 210Po and 210Pb in Nordic terrestrial ecosystems. J Environ Radioact 102:430–437CrossRefGoogle Scholar
  4. 4.
    Rozmaric M, Rogic M, Benedik L, Strok M (2012) Natural radionuclides in bottled drinking waters produced in Croatia and their contribution to radiation dose. Sci Total Environ 437:53–60CrossRefGoogle Scholar
  5. 5.
    Yamamoto M, Sakaguchi A, Tomita J, Imanaka T, Shiraishi K (2009) Measurements of 210Po and 210Pb in total diet samples: estimate of dietary intakes of 210Po and 210Pb for Japanese. J Radioanal Nucl Chem 279(1):93–103CrossRefGoogle Scholar
  6. 6.
    Savidou A, Kehagia K, Eleftheriadis K (2006) Concentration levels of 210Pb and 210Po in dry tobacco leaves in Greece. J Environ Radioact 85:94–102CrossRefGoogle Scholar
  7. 7.
    Al Attar L, Al-Oudat M, Kanakri S, Budeir Y, Khalily H, Al Hamwi A (2011) Radiological impacts of phosphogypsum. J Environ Management 92:2151–2158CrossRefGoogle Scholar
  8. 8.
    EURATOM (2013) Council Directive 2013/51/EURATOM of 22 October 2013, laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumptionGoogle Scholar
  9. 9.
    Porcelli D, Baskaran M (2011) An overview of isotope geochemistry in environmental studies. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Springer, Heidelberg. (ISBN 978-3-642-10636-1) Google Scholar
  10. 10.
    Verdeny E, Masque P, Orellana JG, Hanfland C, Cochran JK, Stewart GM (2009) POC export from ocean surface waters by means of 234Th/238U and 210Po/210Pb disequilibria: a review of the use of two radiotracer pairs. Deep Sea Res II 56:1502–1518CrossRefGoogle Scholar
  11. 11.
    Persson BRR, Holme E (2014) 7Be, 210Pb, and 210Po in the surface air from the Arctic to Antarctica. J Environ Radioact 138:364–374CrossRefGoogle Scholar
  12. 12.
    Hussain N, Ferdelman TG, Church TM, Luther GW (1995) Biovolatilization of polonium: results from laboratory analyses. Aquat Geochem 1:175–188CrossRefGoogle Scholar
  13. 13.
    Figgins PE (1961) The radiochemistry of polonium. US Atomic Energy Commission NASNS-3037Google Scholar
  14. 14.
    Matthews KM, Kim CK, Martin P (2007) Determination of 210Po in environmental materials: a review of analytical methodology. Appl Radiat Isot 65:267–279CrossRefGoogle Scholar
  15. 15.
    Xarchoulakos DC, Kehagia K, Kallithrakas-Kontos N, Potiriadis C (2017) Disequilibrium of dissolved 234U/238U and 210Po/210Pb in Greek rivers. J Radioanal Nucl Chem 312:93–103CrossRefGoogle Scholar
  16. 16.
    Henricsson F, Ranebo Y, Holm E, Roos P (2011) Aspects on the analysis of 210Po. J Environ Radioact 102:415–419CrossRefGoogle Scholar
  17. 17.
    Martin A, Blanchard RL (1969) The thermal volatilization of 137Cs, 210Po and 210Pb from in vivo labeled samples. Analyst 94:441–446CrossRefGoogle Scholar
  18. 18.
    Church TM, Hussain N, Ferdelman TG, Fowler SW (1994) An efficient quantitative technique for the simultaneous analyses of radon daughters 210Pb, 210Bi and 210Po. Talanta 41:243–249CrossRefGoogle Scholar
  19. 19.
    Ehinger SC, Pacer RA, Romines FL (1986) Separation of the radioelements 210Pb–210Bi–210Po by spontaneous deposition onto noble metals and verification by Cherenkov and Liquid scintillation counting. J Radioanal Nucl Chem 98:39–48CrossRefGoogle Scholar
  20. 20.
    Martin P, Hancock GJ (2004) Peak resolution and tailing in alpha-particle spectrometry for environmental samples. Apll Radiat Isot 61:161–165CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Dimitrios C. Xarchoulakos
    • 1
    Email author
  • Konstantina Kehagia
    • 1
  1. 1.Department of Environmental Radioactivity MonitoringGreek Atomic Energy CommissionAthensGreece

Personalised recommendations