Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 319, Issue 1, pp 409–418 | Cite as

Sorption/desorption study of strontium on Ain Oussera soils around the Es-Salam reactor facility

  • Abdelkader BouzidiEmail author
  • Djillali Imessaoudene
  • Abderrahmane Ararem
  • Regadia Aissaoui
Article
  • 13 Downloads

Abstract

Four types of undisturbed soils around the Es-Salam reactor (Algeria) were used to evaluate the sorption behavior of strontium. The batch study was carried out under different experimental conditions. The kinetics were well fited by pseudosecond order model. Soils’s activation energies were 12.37, 14.76, 15.5 and 16.17 kJ mol−1, corresponding to ion-exchange-type sorption. Sorption was exothermic (ΔH° < 0), spontaneous (ΔG° < 0) and favorable at low temperature. Competing cations, particularly Ca2+ reduce the Sr adsorption. Desorption reaction showed a higher value of Sr in the easily extractible phase indicating a relative availability of the element.

Keywords

Undisturbed soils Sorption Batch Sr Desorption 

Notes

Acknowledgements

This work was supported by the Algerian Atomic Energy Commission. The authors are grateful for the financial support.

References

  1. 1.
    Ammann L, Bergaya F, Lagaly G (2005) Determination of the cation exchange capacity of clays with copper complexes revised. Clay Miner 40(4):441–453CrossRefGoogle Scholar
  2. 2.
    Bergaya F, Vayer M (1997) CEC of clays: measurement by adsorption of a copper ethylenediamine complex. Appl Clay Sci 12(3):275–280CrossRefGoogle Scholar
  3. 3.
    Yuan CG, Shi JB, He B, Liu JF, Liang LN, Jiang GB (2004) Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environ Int 30(6):769–783CrossRefGoogle Scholar
  4. 4.
    Pansu M, Gautheyrou J (2006) Handbook of soil analysis: mineralogical, organic and inorganic methods, vol 593–604. Springer, Dordrecht, pp 15–48CrossRefGoogle Scholar
  5. 5.
    Komárek M, Ettler V, Chrastný V, Mihaljevič M (2008) Lead isotopes in environmental sciences: a review. Environ Int 34(4):562–577CrossRefGoogle Scholar
  6. 6.
    Bouzidi A, Souahi F, Hanini S (2010) Sorption behavior of cesium on Ain Oussera soil under different physicochemical conditions. J Hazard Mater 184(1–3):640–646CrossRefGoogle Scholar
  7. 7.
    Bouzidi A, Ararem A, Imessaoudene D, Yabrir B (2015) Sequential extraction of Cs and Sr from Ain Oussera soils around Es-Salam research reactor facility. J Environ Sci 36:163–172CrossRefGoogle Scholar
  8. 8.
    Tsai SC, Wang TH, Li MH, Wei YY, Teng SP (2009) Cesium adsorption and distribution onto crushed granite under different physicochemical conditions. J Hazard Mater 161(2–3):854–861CrossRefGoogle Scholar
  9. 9.
    Cornell RM (1993) Adsorption of cesium on minerals: a review. J Radioanal Nucl Chem 171(2):483–500CrossRefGoogle Scholar
  10. 10.
    Murali MS, Mathur JN (2002) Sorption characteristics of Am(III), Sr(II) and Cs(I) on bentonite and granite. J Radioanal Nucl Chem 254(1):129–136CrossRefGoogle Scholar
  11. 11.
    Cook D, Newcombe G, Sztajnbok P (2001) The application of PAC for MIB and Geosmin removal: predicting PAC doses in four raw waters. Water Res 35(5):1325–1333CrossRefGoogle Scholar
  12. 12.
    Liu D, Hsu C, Chuang C (1995) Ion-exchange and sorption kinetics of cesium and strontium in soils. Appl Radiat Isot 46(9):839–846CrossRefGoogle Scholar
  13. 13.
    Mckay G (1998) Application of surface diffusion model to the adsorption of dyes on bagasse pith. Adsorption 4(3–4):361–372CrossRefGoogle Scholar
  14. 14.
    Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136(3):681–689CrossRefGoogle Scholar
  15. 15.
    Ho YS (2004) Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59(1):171–177CrossRefGoogle Scholar
  16. 16.
    Ho YS, Mckay G (2000) The kinetics of sorption of divalent metal ions onto Sphagnum moss peat. Water Res 34(3):735–742CrossRefGoogle Scholar
  17. 17.
    Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465CrossRefGoogle Scholar
  18. 18.
    Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70(2):115–124CrossRefGoogle Scholar
  19. 19.
    Shahwan T, Akar D, Eroglu AE (2005) Physicochemical characterization of the retardation of aqueous Cs+ ions by natural kaolinite and clinoptilolite minerals. J Colloid Interface Sci 285(1):9–17CrossRefGoogle Scholar
  20. 20.
    Busenberg E, Plummer LN, Parker VB (1984) The solubility of strontianite (SrCO3) in CO2–H2O solutions between 2 and 91 °C, the association constants of SrHCO3 + (aq) and SrCO3(aq) between 5 and 80 °C, and an evaluation of the thermodynamic properties of Sr2+(aq) and SrCO3(aq) at 25 °C and 1 atm total pressure. Geochim Cosmochim Acta 48:2021–2035CrossRefGoogle Scholar
  21. 21.
    Reardon EJ, Armstrong DK (1987) Celestite (SrSO4(s)) solubility in water, seawater and NaCl solution. Geochim Cosmochim Acta 51(1):63–72CrossRefGoogle Scholar
  22. 22.
    Lee JO, Kang IM, Cho WJ (2010) Smectite alteration and its influence on the barrier properties of smectite clay for a repository. Appl Clay Sci 47(1–2):99–104CrossRefGoogle Scholar
  23. 23.
    Pais I, Benton Jones J (1997) Handbook of trace elements. St Lucie Press, Boca-Raton, pp 35–49Google Scholar
  24. 24.
    James RV, Rubin J (1986) Transport of chloride ion in a water-unsaturated soil exhibiting anion exclusion. Soil Sci Soc Am J 50:1142–1149CrossRefGoogle Scholar
  25. 25.
    Kokotov YA, Popova RF (1962) Sorption of long-lived fission products by soils and argillaceous minerals III: selectivity of soils and clays towards 90Sr under various conditions. Soviet Radiochem 4:292–297Google Scholar
  26. 26.
    Sposito G (1989) The chemistry of soils. Oxford University Press, New York, p 277Google Scholar
  27. 27.
    Cornell RM (1992) Adsorption behaviour of cesium on Marl. Clay Miner 27(3):363–371CrossRefGoogle Scholar
  28. 28.
    Basçetin E, Atun G (2006) Adsorption behavior of strontium on binary mineral mixtures of montmorillonite and kaolinite. Appl Radiat Isot 64(8):957–964CrossRefGoogle Scholar
  29. 29.
    Xu D, Tan XL, Chen CL, Wang XK (2008) Adsorption of Pb(II) from aqueous solution to MX-80 bentonite: effect of pH, ionic strength, foreign ions and temperature. Appl Clay Sci 41(1–2):37–46CrossRefGoogle Scholar
  30. 30.
    Vejsada J, Hradil D, Randa Z, Jelinek E, Stulık K (2005) Adsorption of cesium on Czech smectite-rich clays—a comparative study. Appl Clay Sci 30(1):53–66CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Centre de Recherche Nucléaire de BirineAin OusseraAlgeria
  2. 2.Ziane Achour University of DjelfaDjelfaAlgeria

Personalised recommendations