Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 319, Issue 1, pp 393–399 | Cite as

Effect of fluorine on stabilization/solidification of radioactive fluoride liquid waste in magnesium potassium phosphate cement

  • Zheng-hua Qian
  • Xue-yang Liu
  • Yan-bo QiaoEmail author
  • Shuai Wang
  • Qiang Qin
  • Liu-qing Shi
  • Hong-hua Peng
Article
  • 36 Downloads

Abstract

This paper investigated the effect of fluorine mass fraction on magnesium potassium phosphate cement (MKPC) stabilization/solidification (S/S). The solidified object was a simulated fluid containing Co2+, Sr2+, Cs+ and F. The results showed when the fluorine mass fraction increased, the setting time of the MKPC slurry extended. Under the same conditions, the 28-day compressive strength of the MKPC solidified forms reduced, and the freeze–thaw resistance enhanced. When the fluorine mass fraction was more than 6 wt%, a new product (MgF2) appeared and caused the structure to become evacuated. Meanwhile, leaching concentration of the researched ions increased, especially Cs2+ and F. When the fluorine mass fraction of the MKPC solidified forms was 12 wt%, a very small amount of wagnerite was observed.

Keywords

Magnesium potassium phosphate cement Stabilization/solidification Simulated fluid Fluorine mass fraction 

Notes

Funding

Funding was provided by Natural Science Foundation of Jilin Province (CN) (Grant No. 21507143).

References

  1. 1.
    Cai B, Wang J, Sun L et al (2014) Experimental study and numerical optimization on a vane-type separator for bubble separation in TMSR. Prog Nucl Energy 74:1–13CrossRefGoogle Scholar
  2. 2.
    Sun Y, Xia X, Qiao Y et al (2016) Properties of phosphate glass waste forms containing fluorides from a molten salt reactor. J Nucl Sci Technol 27(3):89–95Google Scholar
  3. 3.
    Siemer DD (2014) Molten salt breeder reactor waste management. Nucl Technol 185(1):100–108CrossRefGoogle Scholar
  4. 4.
    Shi C, Spence R (2004) Designing of cement-based formula for solidification/stabilization of hazardous, radioactive, and mixed wastes. Crit Rev Environ Sci Technol 34(4):391–417CrossRefGoogle Scholar
  5. 5.
    Glasser FP (1992) Progress in the immobilization of radioactive wastes in cement. J Hazard Mater 22(2–3):201–216Google Scholar
  6. 6.
    Buj I, Torras J et al (2009) Effect of heavy metals and water content on the strength of magnesium phosphate cements. J Hazard Mater 170(1):345–350CrossRefGoogle Scholar
  7. 7.
    Vinokurov SE, Kulikova SA, Myasoedov BF (2018) Hydrolytic and thermal stability of magnesium potassium phosphate compound for immobilization of high level waste. J Radioanal Nucl Chem 60(1):70–78Google Scholar
  8. 8.
    Vinokurov SE, Kulikova SA, Krupskaya VV, Myasoedov BF (2018) Magnesium potassium phosphate compound for radioactive waste immobilization: phase composition, structure, and physicochemical and hydrolytic durability. Radiochemistry 60:70–78CrossRefGoogle Scholar
  9. 9.
    Wagh AS, Sayenko SY, Shkuropatenko VA et al (2016) Experimental study on cesium immobilization in struvite structures. J Hazard Mater 302:241–249CrossRefGoogle Scholar
  10. 10.
    Covill A, Hyatt NC, Hill J et al (2011) Development of magnesium phosphate cements for encapsulation of radioactive waste. Adv Appl Ceram 110(3):151–156CrossRefGoogle Scholar
  11. 11.
    Ding Z, Li Z (2005) Study of high early strength cement based on fly ash, magnesia and phosphate. Mater Technol 20(3):136–141CrossRefGoogle Scholar
  12. 12.
    Yang Q, Zhu B, Wu X (2000) Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete. Mater Struct 33(4):229–234CrossRefGoogle Scholar
  13. 13.
    Wagh AS, Jeong SY (2003) Chemically bonded phosphate ceramics: I, a dissolution model of formation. J Am Ceram Soc 86(11):1838–1844CrossRefGoogle Scholar
  14. 14.
    Wagh AS, Strain R et al (1999) Stabilization of rocky flats Pu-contaminated ash within chemically bonded phosphate ceramics. J Nucl Mater 265:295–307CrossRefGoogle Scholar
  15. 15.
    Yang JH, Chang HL, Heo CM et al (2013) Stabilization of Cs/Re trapping filters using magnesium phosphate ceramics. J Radioanal Nucl Chem 295:211–219CrossRefGoogle Scholar
  16. 16.
    Lai Z, Qian J, Liang P et al (2011) Study of solidification performance of phosphate cement to 90Sr. Acta Sci Circumiectus 31(12):2792–2797 (in Chinese) Google Scholar
  17. 17.
    Buj I, Torras J et al (2010) Leaching behavior of magnesium phosphate cements containing high quantities of heavy metals. J Hazard Mater 175(1):789–794CrossRefGoogle Scholar
  18. 18.
    Cantrell KJ, Um W et al (2014) Chemical stabilization of Hanford tank residual waste. J Nucl Mater 446:246–256CrossRefGoogle Scholar
  19. 19.
    Rouzic ML, Chaussadent T et al (2017) Mechanisms of k-struvite formation in magnesium phosphate cements. Cem Concr Res 91:117–122CrossRefGoogle Scholar
  20. 20.
    Wagh AS, Singh D et al (1997) Chemically bonded phosphate ceramics for low-level mixed-waste stabilization. J Environ Sci Health Part A 32(2):527–541Google Scholar
  21. 21.
    Ding Z, Li Z (2005) Effect of aggregates and water contents on the properties of magnesium phospho-siliacte cement. Cem Concr Compos 27(1):11–18CrossRefGoogle Scholar
  22. 22.
    GB 5085.3-2007 (2007) Identification standards for hazardous wastes—identification for extraction toxicity (Chinese standard)Google Scholar
  23. 23.
    Zhen S, Dong X et al (2014) Effects of fly ash on the solidification/stabilization of heavy metals with magnesium potassium phosphate cement. Int J Earth Sci Eng 7(4):1274–1279Google Scholar
  24. 24.
    Fei Qiao CK, Chau ZL (2012) Calorimetric study of magnesium potassium phosphate cement. Mater Struct 45(3):447–456CrossRefGoogle Scholar
  25. 25.
    Ma H, Biwan X (2017) Potential to design magnesium potassium phosphate cement paste based on an optimal magnesia-to-phosphate ratio. Mater Des 118:81–88CrossRefGoogle Scholar
  26. 26.
    Lai Z (2012) Immobilization of medium and low level radioactive wastes by magnesium phosphate cement. Ph.D. thesis. Chongqing University, ChinaGoogle Scholar
  27. 27.
    GB 14569.1-2011 (2011) Performance requirements for low and intermediate level radioactive waste form—cemented waste form (Chinese standard)Google Scholar
  28. 28.
    GB/T 7023-2011 (2011) Standard test method for leachability of low and intermediate level solidified radioactive waste forms (Chinese standard)Google Scholar
  29. 29.
    Asabina EA, Zaripov AR et al (2008) Thermodynamic properties of caesium–magnesium monophosphate. J Chem Thermodyn. 40(4):653–660CrossRefGoogle Scholar
  30. 30.
    Sarkar AK (1991) Hydration\dehydration characteristics of struvite and dittmarite pertaining to magnesium ammonium phosphate cement system. J Mater Sci 26:2514–2518CrossRefGoogle Scholar
  31. 31.
    Soudée E, Péra J (2000) Mechanism of setting reaction in magnesia phosphate cements. Cem Concr Res 30(2):315–321CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Zheng-hua Qian
    • 1
  • Xue-yang Liu
    • 1
  • Yan-bo Qiao
    • 1
    Email author
  • Shuai Wang
    • 1
  • Qiang Qin
    • 1
  • Liu-qing Shi
    • 1
  • Hong-hua Peng
    • 1
  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina

Personalised recommendations