Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 3, pp 1785–1795 | Cite as

Sorption of Am(III) on clays and clay minerals: A review

  • Daniel R. FröhlichEmail author
  • Ugras Kaplan


The problem connected to the long-term storage of high-level nuclear waste has initiated an extensive search for suitable host rock formations and backfill materials to guarantee an isolation of hazardous nuclear elements from the biosphere for thousands of years. Besides other alternatives, clays and clayey materials have been in the focus of various sorption studies. With respect to long-term predictions of migration processes, the transuranium elements and fission products are of particular interest. The present review gives a detailed summary of sorption studies conducted during the past decades describing the impact of various geochemical parameters on the immobilization of Am(III) by different clays and clay minerals.


Americium Sorption Clay minerals Nuclear waste disposal 



The work of Daniel R. Fröhlich was supported by the German Federal Ministry for Economic Affairs and Energy (BMWi), Contract Numbers: 02E11031 and 02E11415H.


  1. 1.
    ONDRAF/NIRAS (2001) SAFIR 2: safety assessment and feasibility interim report. NIROND-2001-06 E, ONDRAF/NIRAS, Brussels, BelgiumGoogle Scholar
  2. 2.
    Wang J (2010) High-level waste disposal in China: update 2010. J Rock Mech Geochem Eng 2:1–11Google Scholar
  3. 3.
    OECD (2006) Safety of geological disposal of high-level and long-lived radioactive waste in France—an international peer review of the ‘‘Dossier 2005 Argile’’ concerning disposal in the Callovo–Oxfordian formation. NEA No. 6178, OECDGoogle Scholar
  4. 4.
    Hoth P, Wirth H, Reinhold K, Bräuer V, Krull P, Feldrappe H (2007) Endlagerung radioaktiver Abfälle in tiefen geologischen Formationen Deutschlands – Untersuchung und Bewertung von Tongesteinsformationen. BGR, HannoverGoogle Scholar
  5. 5.
    NAGRA (2002) Projekt Opalinuston – Synthese der geowissenschaftlichen Untersuchungsergebnisse, Entsorgungsnachweis für abgebrannte Brennelemente, verglaste hochaktive sowie langlebige mittelaktive Abfälle. Technical Report NTB 02-03, NAGRA, Wettingen, SwitzerlandGoogle Scholar
  6. 6.
    Bradbury MH, Baeyens B (2003) Far field sorption data bases for performance assessment of a high-level radioactive waste repository in an undisturbed Opalinus clay host rock. PSI report 03-08, PSI, Villigen SwitzerlandGoogle Scholar
  7. 7.
    Geckeis H, Lützenkirchen J, Polly R, Rabung T, Schmidt M (2013) Mineral-water interface reactions of actinides. Chem Rev 113:1016–1062CrossRefGoogle Scholar
  8. 8.
    Fröhlich DR (2015) Sorption of neptunium on clays and clay minerals—a review. Clays Clay Miner 63:262–276CrossRefGoogle Scholar
  9. 9.
    Kim JI, Bernkopf M, Lierse C, Koppold F (1984) Hydrolysis reactions of Am(III) and Pu(VI) ions in near-neutral solutions. In: Scott BG, Navratil JD, Schulz WW (eds) Geochemical behavior of disposed radioactive waste. American Chemical Society, Washington, pp 115–134CrossRefGoogle Scholar
  10. 10.
    Gustafsson JP. (2012) Geochemical equilibrium speciation model Visual MINTEQ Version 3.0. KTH Royal Institute of Technology, Division of Land and Water Resources Engineering, Stockholm, SwedenGoogle Scholar
  11. 11.
    Kim JI (1986) Chemical behaviour of transuranic elements in natural aquatic systems. In: Freeman AJ, Keller C (eds) Handbook on the physics and chemistry of the actinides. Elsevier, AmsterdamGoogle Scholar
  12. 12.
    Silva RJ, Bidoglio G, Rand MH, Robouch PB, Wanner H, Puigdomenech I (1995) Chemical thermodynamics of americium, vol 2. Chemical thermodynamics series. Elsevier, AmsterdamCrossRefGoogle Scholar
  13. 13.
    Guillaumont R, Fanghänel T, Neck V, Fuger J, Palmer DA, Grenthe I, Rand MH (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium, vol 5. Chemical thermodynamics series. Elsevier, AmsterdamGoogle Scholar
  14. 14.
    Courdouan A, Christl I, Meylan S, Wersin P, Kretzschmar R (2007) Isolation and characterization of dissolved organic matter from the Callovo–Oxfordian formation. Appl Geochem 22:1537–1548CrossRefGoogle Scholar
  15. 15.
    Courdouan A, Christl I, Meylan S, Wersin P, Kretzschmar R (2007) Characterization of dissolved organic matter in anoxic rock extracts and in situ pore water of the Opalinus clay. Appl Geochem 22:2926–2939CrossRefGoogle Scholar
  16. 16.
    Smith RM, Martell AE, Motekaitis RJ (2003) NIST critically selected stability constants of metal complexes database. Version 7.0. NIST Standard Reference Database 46. National Institute of Standards and Technology, US Department of Commerce, Gaithersburg, USAGoogle Scholar
  17. 17.
    Plummer LN, Busenberg E (1982) The solubilities of calcite, aragonite and vaterite in CO2–H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3–CO2–H2O. Geochim Cosmochim Acta 46:1011–1040CrossRefGoogle Scholar
  18. 18.
    Felmy AR, Rai D, Fulton RW (1990) The solubility of AmOHCO3(c) and the aqueous thermodynamics of the system Na+–Am3+–HCO3–CO32–OH–H2O. Radiochim Acta 50:193–204CrossRefGoogle Scholar
  19. 19.
    Sposito G, Skipper NT, Sutton R, Park SH, Soper AK, Greathouse JA (1999) Surface geochemistry of the clay minerals. Proc Natl Acad Sci USA 96:3358–3364CrossRefGoogle Scholar
  20. 20.
    Brigatti MF, Galan E, Theng BKG (2006) Structure and mineralogy of clay minerals. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Developments of clay science, vol 1. Elsevier, Amsterdam, pp 21–68Google Scholar
  21. 21.
    Buda RA, Banik NL, Kratz JV, Trautmann N (2008) Studies of the ternary systems humic substance—kaolinite—Pu(III) and Pu(IV). Radiochim Acta 96:657–665CrossRefGoogle Scholar
  22. 22.
    Pompe S, Brachmann A, Bubner M, Geipel G, Heise KH, Bernhard G, Nitsche H (1998) Determination and comparison of uranyl complexation constants with natural and model humic acids. Radiochim Acta 82:89–95CrossRefGoogle Scholar
  23. 23.
    Křepelová A, Sachs S, Bernhard G (2011) Influence of humic acid on the Am(III) sorption onto kaolinite. Radiochim Acta 99:253–260CrossRefGoogle Scholar
  24. 24.
    Lee MH, Jung EC, Song K, Han YH, Shin HS (2011) The influence of humic acid on the pH-dependent sorption of americium(III) onto kaolinite. J Radioanal Nucl Chem 287:639–645CrossRefGoogle Scholar
  25. 25.
    Turner DR, Pabalan RT, Bertetti FP (1998) Neptunium(V) sorption on montmorillonite: an experimental and surface complexation modeling study. Clays Clay Miner 46:256–269CrossRefGoogle Scholar
  26. 26.
    Samadfam M, Jintoku T, Sato S, Ohashi H, Mitsugashira T, Hara M, Suzuki Y (2000) Effects of humic acid on the sorption of Am(III) and Cm(III) on kaolinite. Radiochim Acta 88:717–721CrossRefGoogle Scholar
  27. 27.
    Takahashi Y, Minai Y, Kimura T, Tominaga T (1998) Adsorption of europium(III) and americium(III) on kaolinite and montmorillonite in the presence of humic acid. J Radioanal Nucl Chem 234:277–282CrossRefGoogle Scholar
  28. 28.
    Ma F, Jin Q, Li P, Chen Z, Lu J, Guo Z, Wu W (2017) Experimental and modelling approaches to Am(III) and Np(V) adsorption on the Maoming kaolinite. Appl Geochem 84:325–336CrossRefGoogle Scholar
  29. 29.
    Stumpf T, Hennig C, Bauer A, Denecke MA, Fanghänel T (2004) An EXAFS and TRLFS study of the sorption of trivalent actinides onto smectite and kaolinite. Radiochim Acta 92:133–138CrossRefGoogle Scholar
  30. 30.
    Ticknor KV, Vilks P, Vandergraaf TT (1996) The effect of fulvic acid on the sorption of actinides and fission products on granite and selected minerals. Appl Geochem 11:555–565CrossRefGoogle Scholar
  31. 31.
    Bradbury MH, Baeyens B (2005) Experimental measurements and modeling of sorption competition on montmorillonite. Geochim Cosmochim Acta 69:4187–4197CrossRefGoogle Scholar
  32. 32.
    Bradbury MH, Baeyens B (2006) Modelling sorption data for the actinides Am(III), Np(V) and Pa(V) on montmorillonite. Radiochim Acta 94:619–625CrossRefGoogle Scholar
  33. 33.
    Gorgeon L (1994) Contribution à la modélisation physic-chimique de la retention de radioéléments à vie longue par des matérieux argileux. PhD thesis, Université Paris 6, Paris, FranceGoogle Scholar
  34. 34.
    Bradbury MH, Baeyens B (2005) Modelling the sorption of Mn(II), Co(II), Ni(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides. Geochim Cosmochim Acta 69:875–892CrossRefGoogle Scholar
  35. 35.
    Degueldre C, Ulrich HJ, Silby H (1994) Sorption of 241Am onto montmorillonite, illite and hematite colloids. Radiochim Acta 65:173–179CrossRefGoogle Scholar
  36. 36.
    Nagasaki S, Tanaka S, Suzuki A (1997) Affinity of finely dispersed montmorillonite colloidal particles for americium and lanthanides. J Nucl Mater 244:29–35CrossRefGoogle Scholar
  37. 37.
    Kumar S, Pente AS, Bajpai RK, Kaushik CP, Tomar BS (2013) Americium sorption on smectite-rich natural clay from granitic ground water. Appl Geochem 35:28–34CrossRefGoogle Scholar
  38. 38.
    Nagasaki S, Tanaka S, Suzuki A (1994) Colloid formation and sorption of americium in the water/bentonite system. Radiochim Acta 66(67):207–212Google Scholar
  39. 39.
    Nagasaki S, Ahn J, Tanaka S, Suzuki A (1996) Sorption behavior of Np(IV), Np(V) and Am(III) in the disturbed zone between engineered and natural barriers. J Radioanal Nucl Chem Lett 214:381–389CrossRefGoogle Scholar
  40. 40.
    Kozai N, Yamasaki S, Ohnuki T (2014) Application of simplified desorption method to study on sorption of americium(III) on bentonite. J Radioanal Nucl Chem 299:1571–1579CrossRefGoogle Scholar
  41. 41.
    Iijima K, Shoji Y, Tomura T (2008) Sorption behavior of americium onto bentonite colloid. Radiochim Acta 96:721–730CrossRefGoogle Scholar
  42. 42.
    Konishi M, Yamamoto K, Yanagi T, Okajima Y (1988) Sorption behavior of cesium, strontium and americium ions on clay materials. J Nucl Sci Technol 25:929–933CrossRefGoogle Scholar
  43. 43.
    Murali MS, Mathur JN (2002) Sorption characteristics of Am(III), Sr(II) and Cs(I) on bentonite and granite. J Radioanal Nucl Chem 254:129–136CrossRefGoogle Scholar
  44. 44.
    Yu T, Wu WS, Fan QH (2012) Sorption of Am(III) on Na-bentonite: effect of pH, ionic strength, temperature and humic acid. Chin Chem Lett 23:1189–1192CrossRefGoogle Scholar
  45. 45.
    Bradbury MH, Bayens B (2009) Sorption modelling on illite. Part II: actinide sorption and linear free energy relationship. Geochim Cosmochim Acta 73:1004–1013CrossRefGoogle Scholar
  46. 46.
    Maes N, Aertens M, Salah S, Diederik J, Van Gompel M (2009) Cs, Sr and Am retention on argillaceous host rocks: comparison of data from batch sorption tests and diffusion experiments. External Report SCK•CEN-ER-98. SCK•CEN Studiecentrum voor Kernenergie/Centre d’étude de l’énergie Nucléaire, Mol, BelgiumGoogle Scholar
  47. 47.
    Erickson KL (1979) Radionuclide sorption studies on abyssal red clays. Report SAND-79-0988C. Sandia Laboratories, Albuquerque, NM, USAGoogle Scholar
  48. 48.
    Stammose D, Dolo JM (1990) Sorption of americium at trace level on a clay mineral. Radiochim Acta 51:189–193CrossRefGoogle Scholar
  49. 49.
    Stammose D, Ly J, Pitsch H, Dolo JM (1992) Sorption mechanisms of three actinides on a clayey mineral. Appl Clay Sci 7:225–238CrossRefGoogle Scholar
  50. 50.
    Amayri S, Fröhlich DR, Kaplan U, Trautmann N, Reich T (2016) Distribution coefficients for the sorption of Th, U, Pu, and Am on Opalinus clay. Radiochim Acta 104:33–40CrossRefGoogle Scholar
  51. 51.
    Lujaniene G, Šapolaite J, Amulevičius A, Mažeika K (2006) Czech J Phys 56(Supplement D):103–110CrossRefGoogle Scholar
  52. 52.
    Lujanienė G, Motiejūnas S, Šapolaitė J (2007) Sorption of Cs, Pu and Am on clay minerals. J Radioanal Nucl Chem 274:345–353CrossRefGoogle Scholar
  53. 53.
    Lujanienė G, Beneš P, Štamberg K, Šapolaitė J, Vopalka D, Radžiūtė E, Ščiglo T (2010) Effect of natural clay components on sorption of Cs, Pu and Am by the clay. J Radioanal Nucl Chem 286:353–359CrossRefGoogle Scholar
  54. 54.
    Lujanienė G, Beneš P, Štamberg K, Šapolaitė J, Vopalka D, Radžiūtė E (2011) Study of Pu(IV) and Am(III) sorption to clay minerals: laboratory experiments and modeling. Proc Radiochim Acta 1:237–244Google Scholar
  55. 55.
    Lujanienė G, Beneš P, Štamberg K, Ščiglo T (2012) Kinetics of plutonium and americium sorption to natural clay. J Environ Radioact 108:41–49CrossRefGoogle Scholar
  56. 56.
    Turrero AM, Fernández AM, Peña J, Sánchez MD, Wersin P, Bossart P, Sánchez M, Melón A, Garralón A, Yllera A, Gómez P, Hernán P (2006) Pore water chemistry of a Paleogene continental mudrock in Spain and a Jurassic marine mudrock in Switzerland: sampling methods and geochemical interpretation. J Iber Geol 32:233–258Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Institute of Physical ChemistryRuprecht-Karls-University HeidelbergHeidelbergGermany
  2. 2.KarlsruheGermany

Personalised recommendations