Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 319, Issue 1, pp 159–166 | Cite as

Binding and cytotoxicity of 131I-labeled gastrin-releasing peptide receptor antagonists modified by cell penetrating peptides

  • Minli Lv
  • Peng Zhao
  • Liangang Zhuo
  • Wei Liao
  • Hailin Wang
  • Xia Yang
  • Jing Wang
  • Guanquan Wang
  • Hu Song
  • Yue Feng
  • Yue Chen
  • Yuchuan Yang
  • Hongyuan WeiEmail author
Article
  • 44 Downloads

Abstract

Gastrin releasing peptide receptors (GRPRs) are one of the most interesting targets over expressed in various tumors. Due to the superior potential of the GRPR antagonist analogs, they have been studied in the tumor radio imaging and therapy field. However, typical antagonists suffered the shortcomings of no internalization and poor binding affinity which hampered their applications in radiotherapy. Therefore, we attempted to introduce Oligoarginines (cell penetrating peptides) to RM26, aiming to increase the binding affinity or even trigger the internalization of the peptides on cells. The results showed Arg6 as the most potent CPP, significantly enhanced the binding avidity of RM26 to the GRPR.

Keywords

131GRPR antagonist RM26 peptide Cell penetrating peptides Oligoarginine 

Notes

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant Nos. 21502178 and 21701155).

References

  1. 1.
    Stanzl EG, Trantow BM, Vargas JR, Wender PA (2013) Fifteen years of cell-penetrating, guanidinium-rich molecular transporters: basic science, research tools, and clinical applications. Acc Chem Res 46:2944–2954CrossRefGoogle Scholar
  2. 2.
    Okada H, Ogawa T, Tanaka K, Kanazawa T, Takashima Y (2014) Cytoplasm-responsive delivery systems for siRNA using cell-penetrating peptide nanomicelles. J Drug Deliv Sci Technol 24:3–11CrossRefGoogle Scholar
  3. 3.
    Ocampo-García BE, Santos-Cuevas CL, De León-Rodríguez LM, García-Becerra R, Ordaz-Rosado D, Luna-Guitiérrez MA, Jiménez-Mancilla NP, Romero-Piña ME, Ferro-Flores G (2013) Design and biological evaluation of 99mTc-N2S2-Tat(49-57)-c(RGDyK): a hybrid radiopharmaceutical for tumors expressing α(v)β(3) integrins. Nucl Med Biol 40:481–487CrossRefGoogle Scholar
  4. 4.
    Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 97:13003–13008CrossRefGoogle Scholar
  5. 5.
    Rothbard JB, Jessop TC, Lewis RS, Murray BA, Wender PA (2004) Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J Am Chem Soc 126:9506–9507CrossRefGoogle Scholar
  6. 6.
    Wender PA, Galliher WC, Goun EA, Jones LR, Pillow TH (2008) The design of guanidinium-rich transporters and their internalization mechanisms. Adv Drug Deliv Rev 60:452–472CrossRefGoogle Scholar
  7. 7.
    Vivès E, Schmidt J, Pèlegrin A (2008) Cell-penetrating and cell-targeting peptides in drug delivery. Biochim Biophys Acta 1786:126–138Google Scholar
  8. 8.
    Nakase I, Tanaka G, Futaki S (2013) Cell-penetrating peptides (CPPs) as a vector for the delivery of siRNAs into cells. Mol Biosyst 9:855–861CrossRefGoogle Scholar
  9. 9.
    Boisguérin P, Deshayes S, Gait MJ, O’Donovan L, Godfrey C, Betts CA, Wood MJA, Lebleu B (2015) Delivery of therapeutic oligonucleotides with cell penetrating peptides. Adv Drug Deliv Rev 87:52–67CrossRefGoogle Scholar
  10. 10.
    Zhang D, Wang J, Xu D (2016) Cell-penetrating peptides as noninvasive transmembrane vectors for the development of novel multifunctional drug-delivery systems. J Control Release 229:130–139CrossRefGoogle Scholar
  11. 11.
    Dissanayake S, Denny WA, Gamage S, Sarojini V (2017) Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. J Control Release 250:62–76CrossRefGoogle Scholar
  12. 12.
    Futaki S, Nakase I (2017) Cell-surface interactions on arginine-rich cell-penetrating peptides allow for multiplex modes of internalization. Acc Chem Res 50:2449–2456CrossRefGoogle Scholar
  13. 13.
    Guidotti G, Brambilla L, Rossi D (2017) Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol Sci 38:406–424CrossRefGoogle Scholar
  14. 14.
    Kalafatovic D, Giralt E (2017) Cell-penetrating peptides: design strategies beyond primary structure and amphipathicity. Molecules 22:19–29CrossRefGoogle Scholar
  15. 15.
    Wexselblatt E, Esko JD, Tor Y (2014) On guanidinium and cellular uptake. J Org Chem 79:6766–6774CrossRefGoogle Scholar
  16. 16.
    Begum AA, Wan Y, Toth I, Moyle PM (2018) Bombesin/oligoarginine fusion peptides for gastrin releasing peptide receptor (GRPR) targeted gene delivery. Bioorgan Med Chem 26:516–526CrossRefGoogle Scholar
  17. 17.
    Goddu SM, Howell RW, Rao DV (1994) Cellular dosimetry: absorbed fractions for monoenergetic electron and alpha particle sources and S-values for radionuclides uniformly distributed in different cell compartments. J Nucl Med 35(2):303–316Google Scholar
  18. 18.
    Santos-Cuevas CL, Ferro-Flores G, de Murphy CA, Ramírez FM, Luna-Gutiérrez MA, Pedraza-López M, García-Becerra R, Ordaz-Rosado D (2009) Design, preparation, in vitro and in vivo evaluation of (99m)Tc-N2S2-Tat(49-57)-bombesin: a target-specific hybrid radiopharmaceutical. Int J Pharm 375:75–83CrossRefGoogle Scholar
  19. 19.
    Santos-Cuevas CL, Ferro-Flores G, Rojas-Calderon EL, Garcia-Becerra R, Ordaz-Rosado D, de Murphy CA, Pedraza-Lopez M (2011) Tc-99m-N2S2-Tat (49-57)-bombesin internalized in nuclei of prostate and breast cancer cells: kinetics, dosimetry and effect on cellular proliferation. Nucl Med Commun 32:303–313CrossRefGoogle Scholar
  20. 20.
    Reubi JC (1997) Peptide receptors as molecular targets for cancer diagnosis and therapy. Q J Nucl Med 41:63–70Google Scholar
  21. 21.
    Markwalder R, Reubi JC (1999) Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res 59:1152–1159Google Scholar
  22. 22.
    Mansi R, Fleischmann A, Macke HR, Reubi JC (2013) Targeting GRPR in urological cancers–from basic research to clinical application. Nat Rev Urol 10:235–244CrossRefGoogle Scholar
  23. 23.
    Ferreira CD, Fuscaldi LL, Townsend DM, Rubello D, de Barros ALB (2017) Radiolabeled bombesin derivatives for preclinical oncological imaging. Biomed Pharmacother 87:58–72CrossRefGoogle Scholar
  24. 24.
    Maina T, Nock BA (2017) From bench to bed: new gastrin-releasing peptide receptor-directed radioligands and their use in prostate cancer. PET Clin 12:205–217CrossRefGoogle Scholar
  25. 25.
    Maina T, Nock BA, Kulkarni H, Singh A, Baum RP (2017) Theranostic prospects of gastrin-releasing peptide receptor-radioantagonists in oncology. PET Clin 12:297–309CrossRefGoogle Scholar
  26. 26.
    Tornesello AL, Tornesello ML, Buonaguro FM (2017) An overview of bioactive peptides for in vivo imaging and therapy in human diseases. Mini Rev Med Chem 17:758–770CrossRefGoogle Scholar
  27. 27.
    Cescato R, Maina T, Nock B, Nikolopoulou A, Charalambidis D, Piccand V, Reubi JC (2008) Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J Nucl Med. 49:318–326CrossRefGoogle Scholar
  28. 28.
    Mansi R, Wang XJ, Forrer F, Kneifel S, Tamma ML, Waser B, Cescato R, Reubi JC, Maecke HR (2009) Evaluation of a 1,4,7,10-Tetraazacyclododecane-1,4,7,10-Tetraacetic acid-conjugated bombesin-based radioantagonist for the labeling with single-photon emission computed tomography, positron emission tomography, and therapeutic radionuclides. Clin Cancer Res 15:5240–5249CrossRefGoogle Scholar
  29. 29.
    Yang M, Gao H, Zhou Y, Ma Y, Quan Q, Lang L, Chen K, Niu G, Yan Y, Chen X (2011) F-18-labeled GRPR agonists and antagonists: a comparative study in prostate cancer imaging. Theranostics 1:220–229CrossRefGoogle Scholar
  30. 30.
    Liu Y, Hu X, Liu H, Bu L, Ma X, Cheng K, Li J, Tian M, Zhang H, Cheng Z (2013) A comparative study of radio labeled bombesin analogs for the PET imaging of prostate cancer. J Nucl Med 54:2132–2138CrossRefGoogle Scholar
  31. 31.
    Mansi R, Abiraj K, Wang X, Tamma ML, Gourni E, Cescato R, Bemdt S, Reubi JC, Maecke HR (2015) Evaluation of three different families of bombesin receptor radioantagonists for targeted imaging and therapy of gastrin releasing peptide receptor (GRP-R) positive tumors. J Med Chem 58:682–691CrossRefGoogle Scholar
  32. 32.
    Bakker IL, van Tiel ST, Haeck J, Doeswijk GN, De BE, Segbers M, Maina T, Nock BA, De JM, Dalm SU (2018) In vivo stabilized SB3, an attractive GRPR antagonist, for pre- and intra-operative imaging for prostate cancer. Mol Imaging Biol 14:1–11Google Scholar
  33. 33.
    Mansour N, Dumulon-Perreault V, Ait-Mohand S, Paquette M, Lecomte R, Guerin B (2017) Impact of dianionic and dicationic linkers on tumor uptake and biodistribution of [(64) Cu]Cu/NOTA peptide-based gastrin-releasing peptide receptors antagonists. J Label Compd Radiopharm 60:200–212CrossRefGoogle Scholar
  34. 34.
    Jensen RT, Battey JF, Spindel ER, Benya RV (2007) International union of pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev 60:1–42CrossRefGoogle Scholar
  35. 35.
    Mansi R, Wang XJ, Forrer F, Waser B, Cescato R, Graham K, Borkowski S, Reubi JC, Maecke HR (2011) Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours. Eur J Nucl Med Mol Imaging 38:97–107CrossRefGoogle Scholar
  36. 36.
    Sancho V, Di Florio A, Moody TW, Jensen RT (2011) Bombesin receptor-mediated imaging and cytotoxicity: review and current status. Curr Drug Deliv 8:79–134CrossRefGoogle Scholar
  37. 37.
    Liolios CC, Fragogeorgi EA, Zikos C, Loudos G, Xanthopoulos S, Bouziotis P, Paravatou-Petsotas M, Livaniou E, Varvarigou AD, Sivolapenko GB (2012) Structural modifications of 99mTc-labelled bombesin-like peptides for optimizing pharmacokinetics in prostate tumor targeting. Int J Pharm 430:1–17CrossRefGoogle Scholar
  38. 38.
    Nanda PK, Wienhoff BE, Rold TL, Sieckman GL, Szczodroski AF, Hoffman TJ, Rogers BE, Smith CJ (2012) Positron-emission tomography (PET) imaging agents for diagnosis of human prostate cancer: agonist vs. antagonist ligands. In Vivo 26:583–592Google Scholar
  39. 39.
    Kahkonen E, Jambor I, Kemppainen J, Lehtio K, Gronroos TJ, Kuisma A, Luoto P, Sipila HJ, Tolvanen T, Alanen K, Silen J, Kallajoki M, Roivainen A, Schaefer N, Schibli R, Dragic M, Johayem A, Valencia R, Borkowski S, Minn H (2013) In vivo imaging of prostate cancer using Ga-68-labeled bombesin analog BAY86-7548. Clin Cancer Res 19:5434–5443CrossRefGoogle Scholar
  40. 40.
    Roivainen A, Kahkonen E, Luoto P, Borkowski S, Hofmann B, Jambor I, Lehtio K, Rantala T, Rottmann A, Sipila H, Sparks R, Suilamo S, Tolvanen T, Valencia R, Minn H (2013) Plasma pharmacokinetics, whole-body distribution, metabolism, and radiation dosimetry of Ga-68 bombesin antagonist BAY 86-7548 in healthy men. J Nucl Med 54:867–872CrossRefGoogle Scholar
  41. 41.
    Jamous M, Tamma ML, Gourni E, Waser B, Reubi JC, Maecke HR, Mansi R (2014) PEG spacers of different length influence the biological profile of bombesin-based radiolabeled antagonists. Nucl Med Biol 41:464–470CrossRefGoogle Scholar
  42. 42.
    Varasteh Z, Rosenström U, Velikyan I, Mitran B, Altai M, Honarvar H, Rosestedt M, Lindeberg G, Sörensen J, Larhed M (2014) The effect of mini-PEG-based spacer length on binding and pharmacokinetic properties of a 68Ga-labeled NOTA-conjugated antagonistic analog of bombesin. Molecules 19:10455–10472CrossRefGoogle Scholar
  43. 43.
    Richter S, Wuest M, Bergman CN, Way JD, Krieger S, Rogers BE, Wuest F (2015) Rerouting the metabolic pathway of 18F-labeled peptides: the influence of prosthetic groups. Bioconjugate Chem 26:201–212CrossRefGoogle Scholar
  44. 44.
    Chatalic KLS, Konijnenberg M, Nonnekens J, Blois ED, Hoeben S, Ridder CD, Brunel L, Fehrentz JA, Martinez J, Gent DCV (2016) In vivo stabilization of a gastrin-releasing peptide receptor antagonist enhances PET imaging and radionuclide therapy of prostate cancer in preclinical studies. Theranostics 6:104–117CrossRefGoogle Scholar
  45. 45.
    Sun Y, Ma X, Zhang Z, Sun Z, Loft M, Ding B, Liu C, Xu L, Yang M, Jiang Y, Xiao Y, Chen Z, Hong X (2016) Preclinical study on GRPR-targeted 68Ga-probes for PET imaging of prostate cancer. Bioconjugate Chem 27:1857–1864CrossRefGoogle Scholar
  46. 46.
    Ferreira CdA, Fuscaldi LL, Townsend DM, Rubello D, Barros ALBd (2017) Radiolabeled bombesin derivatives for preclinical oncological imaging. Biomed Pharmacother 87:58–72CrossRefGoogle Scholar
  47. 47.
    Mitran B, Thisgaard H, Rosenstrom U, Dam JH, Larhed M, Tolmachev V, Orlova A (2017) High contrast PET imaging of GRPR expression in prostate cancer using cobalt-labeled bombesin antagonist RM26. Contrast Media Mol Imaging 2017:1–11CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Minli Lv
    • 1
    • 4
  • Peng Zhao
    • 2
    • 3
    • 4
  • Liangang Zhuo
    • 2
    • 3
    • 4
  • Wei Liao
    • 2
    • 4
  • Hailin Wang
    • 2
  • Xia Yang
    • 2
    • 3
    • 4
  • Jing Wang
    • 2
    • 4
  • Guanquan Wang
    • 2
    • 4
  • Hu Song
    • 2
    • 4
  • Yue Feng
    • 1
    • 4
  • Yue Chen
    • 1
    • 4
  • Yuchuan Yang
    • 2
    • 3
    • 4
  • Hongyuan Wei
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of Nuclear MedicineThe Affiliated Hospital of Southwest Medical UniversityLuzhouPeople’s Republic of China
  2. 2.Institute of Nuclear Physics and Chemistry (INPC)China Academy of Engineering Physics (CAEP)MianyangPeople’s Republic of China
  3. 3.Collaborative Innovation Center of Radiation Medicine of JiangsuHigher Education InstitutionsSuzhouPeople’s Republic of China
  4. 4.Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan ProvinceLuzhouPeople’s Republic of China

Personalised recommendations