Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 319, Issue 1, pp 185–196 | Cite as

Comparison of radioactive and stable cesium uptake in aquatic macrophytes affected by the Fukushima Dai-ichi Nuclear Power Plant accident

  • Yoshiyasu NagakawaEmail author
  • Michihisa Uemoto
  • Takahide Kurosawa
  • Kohtaroh Shutoh
  • Hiroshi Hasegawa
  • Noboru Sakurai
  • Emiko Harada
Article

Abstract

Concentrations of 134+137Cs and 133Cs in aquatic macrophytes, water, and sediment were measured in samples collected from Fukushima Prefecture, Japan. The concentrations of 137Cs in submerged and floating-leaved plants were higher than the values for emergent plants according to their main Cs uptake mode. The geometric mean water-to-plant concentration ratio for 137Cs and 133Cs was comparable observed in submerged and floating-leaved plants, while the geometric mean sediment-to-plant concentration ratio for 137Cs in emergent plants was higher than that of 133Cs, which suggest that the mobility of Fukushima accident-derived 137Cs is not in steady state 4–5 years after the accident.

Keywords

Aquatic macrophyte Life form Radiocesium Stable cesium Concentration ratio Fukushima Dai-ichi Nuclear Power Plant accident 

Notes

Acknowledgements

The authors would like to thank Kousuke Tsuji, Miki Yokoyama, Natsumi Ono, Miyuki Sawada, Saya Nakagawa, Yuki  Mekata, (The University of Shiga Prefecture), and Masatoshi Endo (Fukushima University) for assisting with the sample collection and pretreatment, Dr. Syou Kato (Wetlands International Japan) for identification of Nitella oligospira, and Dr. Yasuyuki Yukawa (Tokyo Metropolitan Industrial Technology Research Institute) for assistance in the SF-ICP-MS measurements. We would like to thank Editage (www.editage.jp) for English language editing. This work was partly supported by the Japan Society for the Promotion of Science (JSPS) [Grants-in-Aid for Scientific Research No. 15K00595 awarded to E. H., N. S., and Y. N.].

Supplementary material

10967_2018_6304_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)

References

  1. 1.
    Steinhauser G, Brandl A, Johnson TE (2014) Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci Total Environ 470–471:800–817CrossRefPubMedGoogle Scholar
  2. 2.
    IAEA (International Atomic Energy Agency) (2010) Technical reports series No. 472: Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. IAEA, ViennaGoogle Scholar
  3. 3.
    Nagao S, Kanamori M, Ochiai S, Tomihara S, Fukushi K, Yamamoto M (2013) Export of 134Cs and 137Cs in the Fukushima river systems at heavy rains by Typhoon Roke in September 2011. Biogeosciences 10:6215–6223CrossRefGoogle Scholar
  4. 4.
    Ochiai S, Ueda S, Hasegawa H, Kakiuchi H, Akata N, Ohtsuka Y, Hisamatsu S (2015) Effects of radiocesium inventory on 137Cs concentrations in river waters of Fukushima, Japan, under base-flow conditions. J Environ Radioact 144:86–95CrossRefPubMedGoogle Scholar
  5. 5.
    Sakaguchi A, Tanaka K, Iwatani H, Chiga H, Fan Q, Onda Y, Takahashi Y (2015) Size distribution studies of 137Cs in river water in the Abukuma Riverine system following the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 139:379–389CrossRefPubMedGoogle Scholar
  6. 6.
    Ueda S, Hasegawa H, Kakiuchi H, Akata N, Ohtsuka Y, Hisamatsu S (2013) Fluvial discharges of radiocaesium from watersheds contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident, Japan. J Environ Radioact 118:96–104CrossRefPubMedGoogle Scholar
  7. 7.
    Murakami M, Ohte N, Suzuki T, Ishii N, Igarashi Y, Tanoi K (2014) Biological proliferation of cesium-137 through the detrital food chain in a forest ecosystem in Japan. Sci Rep 4:3599CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mizuno T, Kubo H (2013) Overview of active cesium contamination of freshwater fish in Fukushima and Eastern Japan. Sci Rep 3:1742CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wada T, Tomiya A, Enomoto M, Sato T, Morishita D, Izumi S, Niizeki K, Suzuki S, Morita T, Kawata G (2016) Radiological impact of the nuclear power plant accident on freshwater fish in Fukushima: an overview of monitoring results. J Environ Radioact 151:144–155CrossRefPubMedGoogle Scholar
  10. 10.
    Yoshimura M, Yokoduka T (2014) Radioactive contamination of fishes in lake and streams impacted by the Fukushima nuclear power plant accident. Sci Total Environ 482–483:184–192CrossRefPubMedGoogle Scholar
  11. 11.
    Kowata H, Nagakawa Y, Sakurai N, Hokura A, Terada Y, Hasegawa H, Harada E (2014) Radiocesium accumulation in Egeria densa, a submerged plant—possible mechanism of cesium absorption. J Anal At Spectrom 29:868–874CrossRefGoogle Scholar
  12. 12.
    Nagakawa Y, Uemoto M, Kurosawa T, Shuto K, Hasegawa H, Sakurai N, Harada E (2017) Radiocesium monitoring in aquatic plants and its comparison with the fate of native stable cesium. In: Proceedings of the 18th workshop on environmental radioactivity, pp 226–231 (Japanese) Google Scholar
  13. 13.
    Sasaki Y, Funaki H, Iri S, Dohi T, Hagiwara H (2016) Fate of radiocesium in freshwater aquatic plants and algae in the vicinity of the Fukushima Daiichi nuclear power plant. Limnol 17:111–116CrossRefGoogle Scholar
  14. 14.
    Tezuka M, Nagabayashi H, Hirayama K, Furukawa Y, Nakano K, Takai N (2015) Distribution of radioactive cesium in bottom sediment and hydrophytes of a park lake. J JSCE Div G 71:III_277–III_286 (Japanese) CrossRefGoogle Scholar
  15. 15.
    Howard BJ, Beresford NA, Copplestone D, Telleria D, Proehl G, Fesenko S, Jeffree RA, Yankovich TL, Brown JE, Higley K, Johansen MP, Mulye H, Vandenhove H, Gashchak S, Wood MD, Takata H, Andersson P, Dale P, Ryan J, Bollhöfer A, Doering C, Barnett CL, Wells C (2013) The IAEA handbook on radionuclide transfer to wildlife. J Environ Radioact 121:55–74CrossRefPubMedGoogle Scholar
  16. 16.
    Larsson CM (2008) An overview of the ERICA integrated approach to the assessment and management of environmental risks from ionising contaminants. J Environ Radioact 99:1364–1370CrossRefPubMedGoogle Scholar
  17. 17.
    Caldwell EF, Duff MC, Ferguson CE, Coughlin DP (2011) Plants as bio-monitors for Cs-137, Pu-238, Pu-239,240 and K-40 at the Savannah River Site. J Environ Monit 13:1410–1421CrossRefPubMedGoogle Scholar
  18. 18.
    Carreiro MV, Ferrador G (1997) Radiocaesium transfer from water to a freshwater hydrophyte at different potassium concentrations. WIT Trans Ecol Environ 14:115–122Google Scholar
  19. 19.
    Fesenko S, Fesenko J, Sanzharova N, Karpenko E, Titov I (2011) Radionuclide transfer to freshwater biota species: review of Russian language studies. J Environ Radioact 102:8–25CrossRefPubMedGoogle Scholar
  20. 20.
    Sawidis T, Bellos D, Tsikritzis L (2011) Cesium-137 concentrations in sediments and aquatic plants from the Pinios River, Thessalia (Central Greece). Water Air Soil Pollut 221:215–222CrossRefGoogle Scholar
  21. 21.
    Saxén R, Ilus E (2008) Transfer and behaviour of 137Cs in two Finnish lakes and their catchments. Sci Total Environ 394:349–360CrossRefPubMedGoogle Scholar
  22. 22.
    Yankovich T, Beresford NA, Fesenko S, Fesenko J, Phaneuf M, Dagher E, Outola I, Andersson P, Thiessen K, Ryan J, Wood MD, Bollhöfer A, Barnett CL, Copplestone D (2013) Establishing a database of radionuclide transfer parameters for freshwater wildlife. J Environ Radioact 126:299–313CrossRefPubMedGoogle Scholar
  23. 23.
    Kelly MS, Pinder JE III (1996) Foliar uptake of 137Cs from the water column by aquatic macrophytes. J Environ Radioact 30:271–280CrossRefGoogle Scholar
  24. 24.
    Pinder JE III, Hinton TG, Whicker FW (2006) Foliar uptake of cesium from the water column by aquatic macrophytes. J Environ Radioact 85:23–47CrossRefPubMedGoogle Scholar
  25. 25.
    Hosseini A, Thørring H, Brown JE, Saxén R, Ilus E (2008) Transfer of radionuclides in aquatic ecosystems—default concentration ratios for aquatic biota in the Erica Tool. J Environ Radioact 99:1408–1429CrossRefPubMedGoogle Scholar
  26. 26.
    Murota K, Saito T, Tanaka S (2016) Desorption kinetics of cesium from Fukushima soils. J Environ Radioact 153:134–140CrossRefPubMedGoogle Scholar
  27. 27.
    Saito T, Makino H, Tanaka S (2014) Geochemical and grain-size distribution of radioactive and stable cesium in Fukushima soils: implications for their long-term behavior. J Environ Radioact 138:11–18CrossRefPubMedGoogle Scholar
  28. 28.
    Tsukada H, Shibata H, Sugiyama H (1998) Transfer of radiocaesium and stable caesium from substrata to mushrooms in a pine forest in Rokkasho-mura, Aomori, Japan. J Environ Radioact 39:149–160CrossRefGoogle Scholar
  29. 29.
    Tsukada H, Nakamura Y (1999) Transfer of 137Cs and stable Cs from soil to potato in agricultural fields. Sci Total Environ 228:111–120CrossRefPubMedGoogle Scholar
  30. 30.
    Tsukada H, Hasegawa H, Hisamatsu S, Yamasaki S (2002) Transfer of 137Cs and stable Cs from paddy soil to polished rice in Aomori, Japan. J Environ Radioact 59:351–363CrossRefGoogle Scholar
  31. 31.
    Uchida S, Tagami K (2007) Soil-to-plant transfer factors of fallout 137Cs and native 133Cs in various crops collected in Japan. J Radioanal Nucl Chem 273:205–210CrossRefGoogle Scholar
  32. 32.
    Kanodo Y (2014) A field guide to aquatic plants of Japan. Bun-ichi Sogo Shuppan, Co. Ltd, Tokyo (Japanese) Google Scholar
  33. 33.
    Hirose T, Yamagishi T (1977) Illustrations of the Japanese fresh-water algae. Uchida Rokakuho Publishing, Tokyo (Japanese) Google Scholar
  34. 34.
    Uemoto M (2001) Determination of aluminum in beverages by double focusing sector field inductively coupled plasma mass spectrometry, Analytical Sciences, 17(ICAS2001): i9–i12Google Scholar
  35. 35.
    IAEA (International Atomic Energy Agency) (2014) Technical reports series No. 479: Handbook of parameter values for the prediction of radionuclide transfer to wildlife. IAEA, ViennaGoogle Scholar
  36. 36.
    Uchida S, Takeda H, Tagami K, Takahashi T, Ogiu N, Aono T (2007) Elemental concentrations in Japanese rivers 2002–2006. National Institute of Radiological Sciences, ChibaGoogle Scholar
  37. 37.
    AIST (National Institute of Advanced Industrial Science and Technology) (2007) Geochemical map of sea and land of Japan. https://gbank.gsj.jp/geochemmap/index.html. Accessed 15 Aug 2018 (Japanese)
  38. 38.
    Unno Y, Hachinohe M, Hamanatsu S, Todoroki S, Yunoki A, Miura T (2014) Characteriation of brown rice as a certified reference material for Fukushima accident-related radioactivity measurements. Appl Radiat Isot 87:485–488CrossRefPubMedGoogle Scholar
  39. 39.
    Takayanagi S, Takagi Y, Shimizu A, Hasegawa H (2012) The shoot is important for high-affinity nitrate uptake in Egeria densa, a submerged vascular plant. J Plant Res 125:669–678CrossRefPubMedGoogle Scholar
  40. 40.
    Shishkina EA, Pryakhin EA, Popova IY, Osipov DI, Tikhova Yu, Andreyev SS, Shaposhnikova IA, Egoreichenkov EA, Styazhkina EV, Deryabina LV, Tryapitsina GA, Melnikov V, Rudolfsen G, Teien HC, Sneve MK, Akleyev AV (2016) Evaluation of distribution coefficients and concentration ratios of 90Sr and 137Cs in the Techa River and the Miass River. J Environ Radioact 158:148–163CrossRefPubMedGoogle Scholar
  41. 41.
    Tagami K, Uchida S (2015) Effective half-lives of 137Cs in giant butterbur and field horsetail, and the distribution differences of potassium and 137Cs in aboveground tissue parts. J Environ Radioact 141:138–145CrossRefPubMedGoogle Scholar
  42. 42.
    Yoshimura K, Onda Y, Fukushima T (2014) Sediment particle size and initial radiocesium accumulation in ponds following the Fukushima DNPP accident. Sci Rep 4:4514CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sheppard S, Long J, Sanipelli B (2009) Solid/liquid partition coefficients (K d) for selected soils and sediments at Forsmark and Laxemar-Simpevarp. Svensk Kärnbränslehantering AB (Swedich Nuclear Fuel and Waste Management Co), Stockholm. SKB Report-09-27Google Scholar
  44. 44.
    Sheppard S, Sohlenius G, Omberg L, Borgiel M, Grolander S, Nordén S (2011) Solid/liquid partition coefficients (K d) and plant/soil concentration ratios (CR) for selected soils, tills and sediments at Forsmark. Svensk Kärnbränslehantering AB (Swedich Nuclear Fuel and Waste Management Co), Stockholm. SKB Report-11-24Google Scholar
  45. 45.
    Nishihara K, Iwamoto H, Suyama K (2012) Estimation of fuel compositions in Fukushima-Daiichi nuclear power plant. JAEA-Data-Code 2012-018 (Japanese)Google Scholar
  46. 46.
    Kamei-Ishikawa N, Tagami K, Uchida S (2008) Estimation of 137Cs plant root uptake using naturally exsiting 133Cs. J Nucl Sci Technol 6:146–151CrossRefGoogle Scholar
  47. 47.
    Sansone U, Belli M, Jeran Z, Kanivets VV, Radojko J, Riccardi M, Voitsekhovitch OV (2002) Suspended particle adhesion on aquatic plant surfaces: implications for 137Cs and 133Cs uptake rates and water-to-plant concentration ratios. J Environ Radioact 59:257–271CrossRefPubMedGoogle Scholar
  48. 48.
    Suzuki Y, Yasutaka T, Fujimura S, Yabuki T, Sato M, Yoshioka K, Inubushi K (2015) Effect of the concentration of radiocesium dissolved in irrigation water on the concentration of radiocesium in brown rice. Soil Sci Plant Nutr 61:191–199CrossRefGoogle Scholar
  49. 49.
    Zhu YG, Smolders E (2000) Plant uptake of radiocaesium: a review of mechanisms, regulation and application. J Exp Bot 51:1635–1645CrossRefPubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Yoshiyasu Nagakawa
    • 1
    Email author
  • Michihisa Uemoto
    • 2
  • Takahide Kurosawa
    • 3
  • Kohtaroh Shutoh
    • 3
    • 4
  • Hiroshi Hasegawa
    • 5
  • Noboru Sakurai
    • 1
  • Emiko Harada
    • 5
  1. 1.Biotechnology GroupTokyo Metropolitan Industrial Technology Research InstituteTokyoJapan
  2. 2.School of Science and EngineeringMeisei UniversityHinoJapan
  3. 3.Faculty of Symbiotic Systems ScienceFukushima UniversityFukushimaJapan
  4. 4.Faculty of EducationNiigata UniversityNiigataJapan
  5. 5.School of Environmental ScienceThe University of Shiga PrefectureHikoneJapan

Personalised recommendations