Skip to main content
Log in

Study of variation of soil radon exhalation rate with meteorological parameters in Bakreswar–Tantloi geothermal region of West Bengal and Jharkhand, India

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radon gas is the predominant ionizing radiation on earth. Its occurrence is controlled by the presence of uranium in all types of rocks in the earthcrust, apart from local geological features and atmospheric factors which influence its release into the atmosphere. The present work deals with 24 h observation of the dependence of radon exhalation rate from soil on local meteorological parameters at four locations in Bakreswar–Tantloi geothermal region, located in the highly faulted Chhotanagpur Plateau of eastern India. This study is the primary step towards the determination of soil radon exhalation dynamics in this geothermal area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tanner AB (1980) In: Gendsell TF, Lowder WM (eds) The natural radiation environment III. University of Chicago Press, Chicago, p 5

    Google Scholar 

  2. Nazaroff WW, Moed BA, Sextro RG (1988) Soil as a source of indoor radon: Generation, migration and entry. In: Nazaroff WW, Nero AV (eds) Radon and its decay products in indoor air. Wiley-Interscience, New York, pp 57–112

    Google Scholar 

  3. Rogers VC, Nielson KK (1991) Multiphase radon generation and transport in porous materials. Health Phys 60:807

    Article  CAS  PubMed  Google Scholar 

  4. Nazaroff WW (1992) Radon transport from soil to air. Rev Geophys 30(2):137–160

    Article  Google Scholar 

  5. Elzain AA, Mohammed YSh, Mohamed KS, Mohamed-Ali AM (2016) A study of radium concentration and radon exhalation rate in soil samples from Kassala Town, Sudan Using SSNTDs. Am J Phys Appl 4(4):84–89

    Google Scholar 

  6. Sohrabi M (1998) The state of the art on worldwide studies in some environments with elevated naturally occurring radioactive materials (NORM). Appl Radiat Isot 49(3):169–188

    Article  CAS  PubMed  Google Scholar 

  7. Walia V, Su TC, Fu CC, Yang TF (2005) Spatial variations of radon and helium concentrations in soil-gas across the Shan-Chiao fault, Northern Taiwan. Radiat Meas 40:513–516

    Article  CAS  Google Scholar 

  8. Sun X, Yang P, Xiang Y, Si X, Liu D (2017) Across-fault distributions of radon concentrations in soil gas for different tectonic environments. Geosci J. https://doi.org/10.1007/s12303-017-0028-2

    Article  Google Scholar 

  9. Schweikani R, Giaddui TG, Durrani SA (1995) The effect of soil parameters on the radon concentration values in the environment. Radiat Meas 25:581–584

    Article  Google Scholar 

  10. Sun K, Guo Q, Cheng J (2004) The effect of some soil characteristics on soil radon concentration and radon exhalation from soil surface. J Nucl Sci Technol 41(11):1113–1117

    Article  CAS  Google Scholar 

  11. Kulali F, Akkurt I, Özgür N (2017) The effect of meteorological parameters on radon concentration in soil gas. Acta Phys Pol, A 132:999–1001

    Article  CAS  Google Scholar 

  12. Moses H, Stehney AF, Lucas HF Jr (1960) The effect of meteorological variables upon the vertical and temporal distributions of atmospheric radon. J Geophys Res 65(4):1223–1238

    Article  Google Scholar 

  13. Pearson JE, Moses H (1966) Atmospheric radon-222 concentration variation with height and time. J Appl Meteorol 5:175–181

    Article  CAS  Google Scholar 

  14. Kojima H, Nagano K (1999) The influence of meteorological and soil parameters on radon exhalation. In: Proceedings of radon in the living environment, Athens, Greece

  15. Riley WJ, Robinson AL, Gadgil AJ, Nazaroff WW (1999) Effects of variable wind speed and direction on radon transport from soil into buildings: model development and exploratory results. Atmos Environ 33:2157–2168

    Article  CAS  Google Scholar 

  16. Ashok GV, Nagaiah N, Prasad NGS, Ambika MR (2011) Study of radon exhalation rate from soil, Bangalore, South India. Radiat Prot Environ 34:235–239

    Article  Google Scholar 

  17. Sahoo S, Katlamundi M, Shaji JP, Murali Krishna KS, Udaya Lakshmi G (2018) Influence of meteorological parameters on the soil radon (Rn222) emanation in Kutch, Gujarat, India. Environ Monit Assess 190:111. https://doi.org/10.1007/s10661-017-6434-0

    Article  CAS  PubMed  Google Scholar 

  18. Nikolopoulos D, Louizi A (2008) Study of indoor radon andradon in drinking water in Greece and Cyprus: implications to exposure and dose. Radiat Meas 43(7):1305–1314

    Article  CAS  Google Scholar 

  19. Martín Sánchez A, de la Torre Pérez J, Ruano Sánchez AB, Naranjo Correa FL (2012) Radon in workplaces in Extremadura (Spain). J Environ Radioact 107:86–91

    Article  CAS  PubMed  Google Scholar 

  20. Barman C, Ghose D, Sinha B, Deb A (2016) Detection of earthquake induced radon precursors by Hilbert Huang Transform. J Appl Geophys 133:123–131

    Article  Google Scholar 

  21. Chowdhury S, Deb A, Nurujjaman Md, Barman C (2017) Identification of pre-seismic anomalies of soil radon-222 signal using Hilbert-Huang transform. Nat Hazards 87:1587–1606

    Article  Google Scholar 

  22. Ramola RC, Choubey VM (2003) Measurement of radon exhalation rate from soil samples of Garhwal Himalaya, India. J Radioanal Nucl Chem 256(2):219–223

    Article  CAS  Google Scholar 

  23. Faheem M (2008) Radon exhalation and its dependence on moisture content from samples of soil and building materials. Radiat Meas 43:1458–1462

    Article  CAS  Google Scholar 

  24. Gupta M, Mahur AK, Verma KD (2012) Indoor radon levels in some dwellings surrounding the National Thermal Power Corporations (NTPCs), India. Adv Appl Sci Res 3(3):1262–1265

    CAS  Google Scholar 

  25. Modzelewska D, Dołhańczuk-Śródka A, Ziembik Z (2014) Issues of radon (Rn-222) exhalation measurements. In: Proceedings of ECOpole’14 conference, Jarnoltowek. https://doi.org/10.2429/proc.2014.8(2)049

  26. Harb S, Ahmed NK, Elnobi S (2015) Radon exhalation rate and radionuclides in soil, phosphate, and building materials. IOSR J Appl Phys 7(2):41–50

    Google Scholar 

  27. Kraner HW (1964) Measurements of the effects of the atmospheric variables on Rn-222 flux and soil gas concentrations. In: The natural radiation environment. University of Chicago Press, Chicago, pp 191–215

  28. Fleischer RL, Fisk MD, Hart Jr. HR, Likes RS, Mogro-Campero A (1979) Anomalies in concentrations of radon in the earth. Bendix Field Engineering Corporation, CJBX-97

  29. SinghM Ramola RC, Singh S, Virk HS (1988) The influence of meteorological parameters on soil gas radon. J Assoc Explor Geophys IX 2:85–90

    Google Scholar 

  30. Vaupotič J, Gregorič A, Kobal I, Zvab P, Kozak K, Mazur J, Kochowska E, Grzadziel D (2010) Radon concentration in soil gas and radon exhalation rate at the Ravne Fault in NW Slovenia. Nat Hazards Earth Syst Sci 10:895–899

    Article  Google Scholar 

  31. Zhang L, Guo Q, Sun K (2015) Continuous measurement of radon exhalation rate of soil in Beijing. J Radioanal Nucl Chem 303:1623–1627

    Article  CAS  Google Scholar 

  32. Clements WE, Wilkening MH (1974) Atmospheric pressure effects on 222Rn transport across the earth-air interface. J Geophys Res 79:5025–5029

    Article  CAS  Google Scholar 

  33. Schery SD, Gaeddert DH, Wilkening MH (1984) Factors affecting exhalation of radon from a gravelly sandy loam. J Geophys Res 89:7299–7300

    Article  CAS  Google Scholar 

  34. Dueñas C, Fernández MC, Carretero J, Liger E, Pérez M (1997) Release of 222Rn from some soils. Ann Geophys 15:124–133

    Google Scholar 

  35. Ghose D, Chowdhury DP, Sinha B (2002) Large-scale helium escape from earth surface around Bakreswar–Tantloi geothermal area in Birbhum district, West Bengal, and Dumka district, Jharkhand, India. Curr Sci 82(8):993–996

    CAS  Google Scholar 

  36. Majumdar RK, Majumdar N, Mukherjee AL (2010) Geological, geochemical and geoelectric studies for hydrological characterization and assessment of Bakreswar thermal springs in hard rock areas of Birbhum district, West Bengal, India. In: Proceedings of 8th Biennial international conference and exposition on petroleum geophysics, Hyderabad, India

  37. Naskar AK, Gazi M, Barman C, Chowdhury S, Mondal M, Ghose D, Sinha B, Deb A (2017) Estimation of underground water radon danger in Bakreswar and Tantloi geothermal region, India. J Radioanal Nucl Chem 315:273–283

    Article  CAS  Google Scholar 

  38. Pulinets AA, Leyva Contreras A, Gaivoronska TB, Safronova IA (2004) Ionospheric day-to-day variability and spatial;-temporal correlation. IRI Taks Force Activity Workshop, ICTP, Trieste, Italy

  39. Morozova LI (2011) Clouds as forerunners of earthquakes. Sci First-Hand 4:80–91

    Google Scholar 

  40. Shanker R (1988) Heat-flow of India and discussion on its geological and economic significance. Indian Mineral 42:89–110

    Google Scholar 

  41. Majumdar RK, Majumdar N, Mukherjee AL (2000) Geoelectric investigations in Bakreswar geothermal area, West Bengal, India. J Appl Geophys 45:187–202

    Article  Google Scholar 

  42. GSI Kolkata (1991) Geological Survey of India. Geothermal Atlas of India, Spl Publ 19: 110–113

  43. Singh HK, Chandrasekharam D, Vaselli O, Trupti G, Singh B, Lashin A, Al Arifli N (2014) Physicochemical characteristics of Jharkhand and West Bengal thermal springs along SONATA mega lineament, India. J Earth Syst Sci 124(2):419–430

    Article  CAS  Google Scholar 

  44. Nagar RK, Vishwanathan G, Sagar S, Sankaranarayanan A (1996) Geological, geophysical and geochemical investigations in Bakreswar–Tantloi thermal field, Birbhum and Santhal Parganas districts, West Bengal and Bihar, India. Proc. Sem. on Geothermal Energy in India. In: Pitale UL, Padhi RN (eds) Geological Survey of India—Special Publication 45, pp 349–360

  45. Valdiya KS (2016) Cretaceous volcanism. In: The making of India. Society of Earth Scientists Series. Springer, Cham

  46. Mukhopadhyay DK, Sarolkar PB (2012) Geochemical appraisal of Bakreshwar-Tantloi Hot Springs, West Bengal and Jharkhand, India. In: Proceedings, thirty-seventh workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, USA

  47. Klusman RW, Jaacks JA (1987) Environmental influences upon mercury, radon and helium concentrations in soil gases at a site near Denver, Colorado. J Geochem Explor 27(1–2):259–280

    Article  CAS  Google Scholar 

  48. Schubert M, Schulz H (2002) Diurnal radon variations in the upper soil layers and at the soil-air interface related to meteorological parameters. Health Phys 83:91–96

    Article  CAS  PubMed  Google Scholar 

  49. Jaishi H, Singh S, Tiwari RP, Tiwari RC (2014) Analysis of soil radon data in earthquake precursory studies. Ann Geophys 57(5):S0544. https://doi.org/10.4401/ag-6513

    Article  Google Scholar 

  50. Crawford J, Chambers S, Kang CH, Griffiths A, Kim WH (2015) Analysis of a decade of Asian outflow of PM 10 and TSP to Gosan, Korea; also incorporating Radon-222. Atmos Pollut Res 6(3):529–539

    Article  CAS  Google Scholar 

  51. Chambers SD, Hong SB, Williams AG, Crawford J, Griffiths AD, Park SJ (2014) Characterizing terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island. Atmos Chem Phys 14(18):9903–9916

    Article  CAS  Google Scholar 

  52. Damkjaer A, Korsbech U (1985) Measurement of the emanation of radon-222 transport from Danish soils. Sci Total Environ 45:343–350

    Article  CAS  PubMed  Google Scholar 

  53. Sheng TK, Jer HS (2003) Indoor radon radioactivity at the University of Brunei Darussalam. Pure appl Geophys 160:75–80

    Article  Google Scholar 

  54. Qiuju G, Sun K, Cheng C (2004) Methodology study on evaluation of radon flux from soil in China. Radiat Prot Dosim 112:291–296

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the logistic support of Bose Institute for carrying out this work at Bakreswar, as it has been conducted under the joint collaboration between Bose Institute and Jadavpur University. The authors are grateful to the staff of the Helium Laboratory at Bakreswar for their invaluable help. SC and AD acknowledge the financial help of the Department of Science and Technology (DST), Govt. of India, for the fellowship of SC and the UPE-II programme for Jadavpur University which provided funds for instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saheli Chowdhury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, S., Barman, C., Deb, A. et al. Study of variation of soil radon exhalation rate with meteorological parameters in Bakreswar–Tantloi geothermal region of West Bengal and Jharkhand, India. J Radioanal Nucl Chem 319, 23–32 (2019). https://doi.org/10.1007/s10967-018-6286-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6286-2

Keywords

Navigation