Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 3, pp 1641–1647 | Cite as

Analytical radiochemistry of neutron activated samples in practice

  • Borut SmodišEmail author
  • Ljudmila Benedik
  • Radojko Jaćimović
Article
  • 111 Downloads

Abstract

Analytical radiochemistry of neutron-activated samples, as practiced during past decades at the Jožef Stefan Institute Ljubljana, is outlined. The paper reviews achievements made in both elemental analysis and analyses of long-lived radionuclides, in variety of sample types. The presented analytical procedures include application of diverse chemical separations, multiple irradiations of samples, use of various nuclear reactions and detection modes for particular measurands, and determination of elements that are difficult to be determined by neutron activation analysis (NAA). Useful practical applications of neutron-activated tracers for chemical yield determinations, as unique feature of radiochemical NAA in comparison with non-nuclear analytical methods, are also addressed.

Keywords

Analytical radiochemistry Neutron activation analysis Radiochemical separation k0-RNAA Radioactive tracer 

Notes

Acknowledgements

Late Professor L. Kosta and our retired colleagues Drs. A.R. Byrne, M. Dermelj and V. Stibilj are acknowledged for their contributions to methodological developments to the RNAA at JSI. The authors also thank Dr. Z. Šlejkovec, as well as ex-colleagues Drs. A. Fajgelj, A. Osterc and U. Repinc for their valuable work within the group. Gratitude goes to colleagues from the Institute of Chemistry, Ss. Cyril and Methodius University in Skopje, for their long-term collaboration. The Slovenian Research Agency, ARRS, (Contracts Nos. P1-0143 and P2-0075) is greatly acknowledged for its financial support.

References

  1. 1.
    Kosta L, Byrne AR (1969) Activation analysis for mercury in biological samples at nanogram level. Talanta 16:1297–1303CrossRefGoogle Scholar
  2. 2.
    IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997).XML on-line corrected version: http://goldbook.iupac.org (2006-) created by Nic M, Jirat J, Kosata B; updates compiled by Jenkins A. ISBN 0-9678550-9-8.  https://doi.org/10.1351/goldbook
  3. 3.
    Girardi F, Sabbioni E (1968) Selective removal of radio-sodium from neutron-activated materials by retention on hydrated antimony pentoxide. J Radioanal Chem. 1:169–178CrossRefGoogle Scholar
  4. 4.
    Török G, Schelenz R, Fischer E, Dichl JF (1973) Separation of Na, K and P by means of inorganic separators in the neutron-activation analysis of biological material. Z Anal Chem 263:110–115CrossRefGoogle Scholar
  5. 5.
    Ravnik V, Dermelj M, Kosta L (1974) A highly selective diethydihiocarbamate extraction system in activation analysis of copper, indium, manganese and zinc application to the analysis of standard reference materials. J Radioanal Chem. 20:443–453CrossRefGoogle Scholar
  6. 6.
    Polkowska-Motrenko H, Zmijewska W, Bartos B, Bilewicz A, Narbutt J (1992) Composite ion exchanger for removal of sodium-24 from mineralizates of biological materials in neutron activation analysis. J Radioanal Nucl Chem Lett 164:115–122CrossRefGoogle Scholar
  7. 7.
    Kosta L, Pihlar B, Smodiš B (1979) Trace elements as indicators of the origin of ancient alloys from Slovene finds. Vestn Slov Kem Drus 26:249–259Google Scholar
  8. 8.
    Wester PO, Brune D, Samsahl K (1964) Radiochemical recovery studies of a separation scheme for 23 elements in biological material. Int J Appl Rad Isot. 15:59–67CrossRefGoogle Scholar
  9. 9.
    Morrison GH, Potter NM (1972) Multielement neutron activation analysis of biological material using chemical group separations and high resolution gamma spectrometry. Anal Chem 44:839–842CrossRefGoogle Scholar
  10. 10.
    Velandia JA, Perkons K (1974) An ion-exchange group-separation scheme for rapid analysis of the components of neutron-activated biological tissues. J Radioanal Chem. 20:473–487CrossRefGoogle Scholar
  11. 11.
    Guzzi G, Pietra R, Sabbioni E (1976) Determination of 25 elements in biological standard reference materials by neutron activation analysis. J Radioanal Chem. 34:35–57CrossRefGoogle Scholar
  12. 12.
    Byrne AR, Vakselj A (1974) Rapid neutron activation analysis of arsenic in a wide range of samples by solvent extraction of the iodide. Croat Chem Acta 46:225–235Google Scholar
  13. 13.
    Byrne AR (1974) Neutron activation analysis of tin in biological materials and their ash using 123Sn and 125Sn. J Radioanal Chem. 20:627–637CrossRefGoogle Scholar
  14. 14.
    Dermelj M, Vakselj A, Ravnik V, Smodiš B (1979) Applicability of carbamate extraction to radiochemical separation and determination of cadmium, cobalt, copper and zinc in various biosphere samples. Radiochem Radioanal Lett 41:149–160Google Scholar
  15. 15.
    Byrne AR, Dermelj M (1994) Comprehensive RNAA of cadmium, cobalt, nickel, and copper using 109Cd, 57Co, and reactor-produced 67Cu as radioisotopic yield monitors. Biol Trace Elem Res 43:87–94CrossRefGoogle Scholar
  16. 16.
    Repinc U, Benedik L, Pihlar B (2008) Determination of cobalt in biological materials by RNAA via induced short-lived 60mCo. Microchim Acta 162:141–146CrossRefGoogle Scholar
  17. 17.
    Dermelj M, Byrne AR, Franko M, Smodiš B, Stegnar P (1986) The use of 4-nitro-o-phenylene diamine/4-NDP/and sodium diethyldithiocarbamate/Na-DDTC/in the radiochemical separation of Cd Co, Cu, Se and Zn from different biological samples. J Radioanal Nucl Chem Lett 106:91–98CrossRefGoogle Scholar
  18. 18.
    Byrne AR, Kosta L (1978) Determination of vanadium in biological materials at nanogram level by neutron activation analysis. J Radioanal Chem. 44:247–264CrossRefGoogle Scholar
  19. 19.
    Byrne AR, Kučera J (1991) Radiochemical neutron activation analysis of traces of vanadium in biological samples: a comparison of prior dry ashing with post-irradiation wet ashing. Fresenius J Anal Chem 340:48–52CrossRefGoogle Scholar
  20. 20.
    Byrne AR, Krašovec I (1988) Trace determination of nickel (and cobalt) in biological reference materials by radiochemical neutron activation analysis. Fresenius Z Anal Chem. 332:666–668CrossRefGoogle Scholar
  21. 21.
    Dermelj M, Stibilj V, Stekar J, Byrne AR (1991) Simultaneous determination of iodine and selenium in biological samples by radiochemical neutron activation analysis. Fresenius J Anal Chem 340:258–261CrossRefGoogle Scholar
  22. 22.
    Byrne AR (1977) Activation analysis of tin at nanogram level by liquid scintillation counting of 121Sn. J Radioanal Chem. 37:591–597CrossRefGoogle Scholar
  23. 23.
    Byrne AR (1982) Simultaneous radiochemical neutron activation analysis of vanadium, molybdenum and arsenic in biological samples. Radiochem Radioanal Lett. 52:99–110Google Scholar
  24. 24.
    Dermelj M, Stibilj V, Stekar J, Byrne AR (1991) Simultaneous determination of iodine and selenium in biological samples by radiochemical neutron activation analysis. Fresenius J Anal Chem 340:258–261CrossRefGoogle Scholar
  25. 25.
    Dermelj M, Byrne AR (1997) Simultaneous radiochemical neutron activation analysis of iodine, uranium and mercury in biological and environmental samples. J Radioanal Nucl Chem 216:13–18CrossRefGoogle Scholar
  26. 26.
    Šlejkovec Z, Byrne AR, Dermelj M (1993) Neutron activation analysis of arsenic species. J Radioanal Nucl Chem Art 173:357–364CrossRefGoogle Scholar
  27. 27.
    Fajgelj A, Byrne AR (1995) Determination of lead, cadmium and thallium by neutron activation analysis in environmental samples. J Radioanal Nucl Chem Art 189:333–343CrossRefGoogle Scholar
  28. 28.
    Simonits A, De Corte F, Hoste J (1975) Single-comparator methods in reactor neutron activation analysis. J Radioanal Chem. 24:31–46CrossRefGoogle Scholar
  29. 29.
    Smodiš B, Jaćimović R, Jovanović S, Stegnar P (1990) Determination of trace elements in standard reference materials by the k 0-standardization method. Biol Trace Elem Res 26:43–51CrossRefGoogle Scholar
  30. 30.
    Jaćimović R, Stafilov T, Stibilj V, Taseska M, Makreski P (2015) Application of k 0-method of neutron activation analysis for determination of trace elements in various mineral samples: a review. Maced J Chem Chem Eng 34:169–179CrossRefGoogle Scholar
  31. 31.
    Safilov T, Angelov N, Jaćimović R, Stibilj V (2005) Determination of trace elements in arsenic and antimony minerals by atomic absorption spectrometry and k 0-instrumental neutron activation analysis after removal of As and Sb. Microchim Acta 149:229–237CrossRefGoogle Scholar
  32. 32.
    Byrne AR (1972) The toluene extraction of some elements as iodides from sulphuric acid-potassium iodide media. Application to neutron activation analysis: Part II. Determination of arsenic and antimony in biological materials at submicrogram levels. Anal Chim Acta 59:91–99CrossRefGoogle Scholar
  33. 33.
    Makreski R, Jaćimović R, Stibilj V, Stafilov T, Jovanovski G (2008) Determination of trace elements in iron minerals by instrumental and radiochemical neutron activation analysis. Radiochim Acta 96:855–861CrossRefGoogle Scholar
  34. 34.
    Taseska M, Makreski P, Stibilj V, Jaćimović R, Stafilov T, Jovanovski G (2008) Determination of trace elements in chalopyrite (CuFeS2) by k 0-instrumental neutron activation analysis after matrix elements removal. Maced J Chem Chem Eng 27:141–147Google Scholar
  35. 35.
    Jaćimović R, Makreski P, Stibilj V, Stafilov T (2008) Determination of major and trace elements in iron reference materials using k 0-NAA. J Radioanal Nucl Chem 278:795–799CrossRefGoogle Scholar
  36. 36.
    Taseska M, Makreski P, Stibilj V, Jaćimović R, Stafilov T (2008) Determination of trace elements in hematite’s iron reference material JSS-804-1 using k0-INAA. Geol Maced. 22:43–48Google Scholar
  37. 37.
    Makreski P, Jaćimović R, Stibilj V, Stafilov T (2009) Determination of major and trace elements in iron-nickel-copper-cobalt ore reference materials using k 0-NAA. Radiochim Acta 97:643–649CrossRefGoogle Scholar
  38. 38.
    Taseska M, Jaćimović R, Stibilj V, Stafilov T, Makreski P, Jovanovski G (2010) Is removal of copper by electrolysis from copper minerals an appropriate method for determination of trace elements? Nucl Inst Method Phys Res A 622:449–452CrossRefGoogle Scholar
  39. 39.
    Taseska M, Makreski P, Stibilj V, Jaćimović R, Stafilov T (2012) Is extraction of Fe from iron based reference materials an appropriate method for determination of trace elements? Radiochim Acta 100:57–63CrossRefGoogle Scholar
  40. 40.
    Taseska M, Jaćimović R, Stibilj V, Stafilov T, Makreski P, Jovanovski G (2012) Determination of trace elements in some copper minerals by k 0-neutron activation analysis. Appl Radiat Isot 70:35–39CrossRefGoogle Scholar
  41. 41.
    Byrne AR, Benedik L (1999) Application of neutron activation analysis in determination of natural and man-made radionuclides, including Pa-231. Czech J Phys 49(S1):263–267CrossRefGoogle Scholar
  42. 42.
    Benedik L, Byrne AR (1995) Simultaneous determination of trace uranium and thorium by radiochemical neutron activation analysis. J Radioanal Nucl Chem Art 189:325–331CrossRefGoogle Scholar
  43. 43.
    Repinc U, Benedik L (2005) Simultaneous determination of trace uranium and vanadium in biological samples by radiochemical neutron activation analysis. J Radioanal Nucl Chem 264:77–81CrossRefGoogle Scholar
  44. 44.
    Repinc U, Benedik L (2008) Development of the procedure for simultaneous determination of vanadium, uranium and manganese in biological materials using RNAA. Acta Chim Slov 55:653–659Google Scholar
  45. 45.
    Byrne AR (1986) Determination of 237Np in Cumbrian (UK) sediments by neutron activation analysis: preliminary results. J Environ Radioact 4:133–144CrossRefGoogle Scholar
  46. 46.
    Benedik L, Repinc U (2003). Determination of 237Np by neutron activation analysis and alpha spectrometry. In: Warwick P (ed) Environmental radiochemical analysis II. The Proceedings of the 9th international symposium on environmental radiochemical analysis. The Royal Society of Chemistry, pp 245–247Google Scholar
  47. 47.
    Tavčar P, Jakopič R, Benedik L (2005) Sequential determination of Am-241, Np-237, Pu radioisotopes and Sr-90 in soil and sediment samples. Acta Chim Slov 52:60–66Google Scholar
  48. 48.
    Benedik L, Trdin M (2017) Determination of low level Np-237 by various techniques. Appl Radiat Isot 126:208–213CrossRefGoogle Scholar
  49. 49.
    Byrne AR, Benedik L (1988) Determination of uranium at trace levels by radiochemical neutron-activation analysis employing radioisotopic yield evaluation. Talanta 35:161–166CrossRefGoogle Scholar
  50. 50.
    Osterc A, Jaćimović R, Stibilj V (2007) Development of a method for 129I determination using radiochemical neutron activation analysis. Acta Chim Slov 54:273–283Google Scholar
  51. 51.
    Byrne AR (1987) Low-level simultaneous determination of As and Sb in standard reference materials using radiochemical neutron activation analysis with radioisotopic 77As and 125Sb tracers. Fresenius Z Anal Chem. 326:733–735CrossRefGoogle Scholar
  52. 52.
    Stibilj V, Dermelj M, Byrne AR (1994) 81mSe tracer for determination of the chemical yield in radiochemical neutron activation analysis of selenium. J Radioanal Nucl Chem Art 182:317–322CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Environmental SciencesJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Reactor Infrastructure CentreJožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations