Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 3, pp 1473–1492 | Cite as

Activation analysis in Czechoslovakia and in the Czech Republic: more than 50 years of activities

  • Jan KučeraEmail author
Article
  • 132 Downloads

Abstract

Neutron activation analysis has been continuously pursued in the former Czechoslovakia and in the Czech Republic since 1962, after an experimental nuclear reactor VVR-S became available. Activities in photon activation analysis started after the installation of a microtron, a source of high energy photons, in 1980. Methodological developments of both methods are described, as well as their applications in various fields of science and technology, namely in environmental research and occupational health studies, cosmo- and geochemical research, biomedical studies, agricultural, nutritional, material research, archaeological and cultural heritage studies, and in quality control and preparation of reference materials.

Keywords

Neutron activation analysis Photon activation analysis Methodological developments Radiochemical separations Applications in science and technology 

Notes

Acknowledgements

The author would like to thank to J. Mizera, J. Kameník, and J. Borovička for their helpful comments and additions. This work was supported by the Czech Science Foundation within Project P108/12/G108.

References

  1. 1.
    Kysela J (2005) In: Kuča L, Zběhlík J (eds) 50 years of Nuclear Research Institute at Řež 1955–2005. Nuclear Research Institute, Řež, pp 207–214 (in Czech). ISBN 80-239-4904-7Google Scholar
  2. 2.
    Vognar M, Šimáně Č, Chvátil D (2003) Twenty years of microtron laboratory activities at CTU in Prague. Acta Polytech 43:50–58Google Scholar
  3. 3.
    Krist P, Horák Z, Mizera J, Chvátil D, Vognar M, Řanda Z (2015) Innovations at the MT 25 microtron aimed at applications in photon activation analysis. J Radioanal Nucl Chem 304:183–188Google Scholar
  4. 4.
    Kotas P (1978) On fifteen years of activation analysis in Czechoslovakia. Radiochem Radioanal Lett 32:209–218Google Scholar
  5. 5.
    Vobecký M (1994) History of development and applications of nuclear analytical methods in the Czech Republic. Biol Trace Elem Res 43–45:1–6PubMedGoogle Scholar
  6. 6.
    Kukula F, Slunečko J, Šimková M (1962) Copper determination in aluminium. Report ÚJV 672, Nuclear Physics Institute of the Czech Academy of Sciences, Řež (in Czech) Google Scholar
  7. 7.
    Šimková M (1963) Activation analysis of tantalum in iron alloys and in niobium. Hutnické listy 18(5):357–358 (in Czech) Google Scholar
  8. 8.
    Šimková M, Kukula F, Slunečko J (1964) Iodine determination in organic polymers by activation analysis. Chem Zvesti 19:115–119 (in Czech) Google Scholar
  9. 9.
    Vobecký M, Knotek O (1964) Activation determination of gold in quartz. Chem Listy 58:15–17 (in Czech) Google Scholar
  10. 10.
    Rakovič M, Talpová H (1964) Use of nondestructive activation analysis for the determination of sodium in biological material. Čas Lék Čes 103:632–635 (in Czech) Google Scholar
  11. 11.
    Rakovič M, Talpová H (1969) Arsenic determination in biological material with neutron activation analysis. Čas Lék Čes 108:1102–1104 (in Czech) Google Scholar
  12. 12.
    Rakovič M (1970) Activation analysis. Academia, PragueGoogle Scholar
  13. 13.
    Babický A, Taylor DM (1966) Determination of Zn in human teeth by activation analysis. Čs Stomat 66:167–170 (in Czech) Google Scholar
  14. 14.
    Pařízek J, Boursnell JC, Hay MF, Babický A, Taylor DM (1966) Zinc in the maturing rat testis. J Reprod Fertil 12:501–507PubMedGoogle Scholar
  15. 15.
    Růžička J, Starý J (1963) A new principle of activation analysis separations—I: theory of substoichiometric determinations. Talanta 10:287–293Google Scholar
  16. 16.
    Zeman A, Růžička J, Starý J (1963) A new principle of activation analysis separations—II: substoichiometric determination of traces of zinc and copper in germanium dioxide. Talanta 10:685–689Google Scholar
  17. 17.
    Růžička J, Starý J, Zeman A (1963) A new principle of activation analysis separations—IV: substoichiometric determination of traces of silver. Talanta 10:905–909Google Scholar
  18. 18.
    Růžička J, Starý J (1968) Substoichiometry in radiochemical analysis. Pergamon Press, OxfordGoogle Scholar
  19. 19.
    Křivánek M, Kukula F, Slunečko J (1965) Substoichiometric determination of copper in high-purity metals by activation analysis. Talanta 12:721–726Google Scholar
  20. 20.
    Kukula F, Mudrová B, Křivánek M (1967) Use of thenoyltrifluoroacetone for the determination of manganese by activation analysis. Talanta 14:233–237PubMedGoogle Scholar
  21. 21.
    Kukula F, Šimková M (1970) Application of the group substoichiometric separation of gold, mercuric, and cupric diethyldithiocarbamates to determining them by means of activation analysis. J Radioanal Chem 4:271–279Google Scholar
  22. 22.
    Obrusník I, Adámek A (1968) Replacement substoichiometry and its application in activation analysis. Talanta 15:433–440Google Scholar
  23. 23.
    Obrusník I (1969) Determination of indium and tin by activation analysis using replacement substoichiometry. Talanta 16:563–566PubMedGoogle Scholar
  24. 24.
    Racek J (2005) In: Kuča L, Zběhlík J (eds) 50 years of Nuclear Research Institute at Řež 1955–2005. Nuclear Research Institute, Řež, pp 227–229 (in Czech). ISBN 80-239-4904-7Google Scholar
  25. 25.
    Vobecký M, Petrů F (1968) Beiträge zur Chemie der selteneren Elemente LIV. Nichtdestruktive Aktivierungsanalyse des Braunerschen Didyms. Collect Czech Chem Commun 33:3903–3906Google Scholar
  26. 26.
    Řanda Z, Vobecký M, Kuncíř J, Benada J (1978) Multielement standards in routine neutron activation analysis. J Radioanal Chem 46:95–107Google Scholar
  27. 27.
    Řanda Z (1976) Analytical possibilities of epithermal neutron activation in routine INAA of mineral materials. Radiochem Radioanal Lett 24:157–168Google Scholar
  28. 28.
    Kučera J (1979) Epithermal neutron activation analysis of trace elements in biological materials. Radiochem Radioanal Lett 38:229–246Google Scholar
  29. 29.
    Obrusník I, Bode P (1992) Improved ease of operation in epithermal NAA by irradiation in plastic capsules and use of well-type Ge-spectrometry. A feasibility study. J Radioanal Nucl Chem 158:343–352Google Scholar
  30. 30.
    Bartošek J, Adams F, Hoste J (1972) A dead-time correction system for gamma-ray spectrometry of short-lived isotopes. Nucl Instrum Methods 103:45–47Google Scholar
  31. 31.
    Bartošek J, Mašek J, Adams F, Hoste J (1972) The use of a pileup rejector in quantitative pulse spectrometry. Nucl Instrum Methods 104:221–223Google Scholar
  32. 32.
    Kosina Z (1970) A peak finding method for use in Ge(Li) spectra processing. Nucl Instrum Methods 88:163–164Google Scholar
  33. 33.
    Kajfosz J, Kosina Z (1973) A peak location method with statistically defined sensitivity. Nucl Instrum Methods 107:613–614Google Scholar
  34. 34.
    Hnatowicz V (1976) Identification of weak lines in gamma-ray spectra. Nucl Instrum Methods 133:137–141Google Scholar
  35. 35.
    Hnatowicz V (1977) Dependence of efficiency curve for Ge(Li) detectors on detector shape. Nucl Instrum Methods 142:403–407Google Scholar
  36. 36.
    Kokta L (1973) Determination of peak area. Nucl Instrum Methods 112:245–251Google Scholar
  37. 37.
    Obrusník I, Kučera J (1978) Digital methods of peak area computation and detection limit in gamma-spectrometry. Radiochem Radioanal Lett 32:149–160Google Scholar
  38. 38.
    Frána J (2003) Program DEIMOS32 for gamma-ray spectra evaluation. J Radioanal Nucl Chem 257:583–587Google Scholar
  39. 39.
    De Corte F, De Wispelaere A, van Sluijs R, Bossus D, Simonits A, Kučera J, Frána J, Smodiš B, Jaćimović R (1997) The installation of Kayzero-assisted NAA for use in industry and environmental sanitation in three Central European countries: plans and achievements of a Copernicus project. J Radioanal Nucl Chem 215:31–37Google Scholar
  40. 40.
    De Corte F, van Sluijs R, Simonits A, Kučera J, Smodiš B, Byrne AR, De Wispelaere A, Bossus D, Frána J, Horák Z, Jaćimović R (2001) Installation and calibration of Kayzero-assisted NAA in three Central European countries via a Copernicus project. Appl Radiat Isot 55:347–354PubMedGoogle Scholar
  41. 41.
    De Corte F, van Sluijs R, Simonits A, Kučera J, Smodiš B, Byrne AR, De Wispeleare A, Bossus D, Frána J, Horák Z, Jaćimovič R (2001) The validation of Kayzero-assisted NAA in Budapest, Řež, and Ljubljana via the analysis of three BCR certified reference materials. Fresenius J Anal Chem 370:38–41PubMedGoogle Scholar
  42. 42.
    Aarnio PA, Nikkinen MT, Routti JT (1992) Sampo-90 high resolution interactive gamma-spectrum analysis including automation with macros. J Radioanal Nucl Chem 160:289–296Google Scholar
  43. 43.
    Fazekas B, Molnár G, Belgya T, Dabolczi L, Simonits A (1997) Introducing Hypermet-PC for automatic analysis of complex gamma-ray spectra. J Radioanal Nucl Chem 215:271–277Google Scholar
  44. 44.
    Obrusník I, Eckschlager K (1987) Optimization of information properties of NAA with respect to information content and profitability of results. J Radioanal Nucl Chem 112:233–242Google Scholar
  45. 45.
    Kučera J, Zeisler R (2004) Do we need radiochemical separation in activation analysis? J Radioanal Nucl Chem 262:255–260Google Scholar
  46. 46.
    Řanda Z, Benada J, Kunciř J, Vobecký M, Frána J (1972) Radioanalytical methods for the non-destructive analysis of lunar samples. J Radioanal Chem 11:305–337Google Scholar
  47. 47.
    Baldová D, Škoda R, Kučera J, Viererbl L, Uhlíř J (2011) Feasibility study of 233Pa and 233U determination in neutron irradiated thorium for future applications in thorium–uranium nuclear fuel cycle. J Radioanal Nucl Chem 288:37–42Google Scholar
  48. 48.
    Majer J, Vobecký M (1973) Study of analytical possibilities of uranium determination using delayed neutrons induced by 14 MeV fast neutrons. Radioisotopy 14:681–692 (in Czech) Google Scholar
  49. 49.
    Vandlík T, Kliment V, Sčasnár V (1973) Determination of some elements in oil additives by 14 MeV neutron activation analysis. Radioisotopy 14:537–545 (in Slovak) Google Scholar
  50. 50.
    Kliment V, Tolgyessy J (1970) On the feasibility of the determination of cobalt and selenium by on-stream activation analysis. Radiochem Radioanal Lett 5:259–263Google Scholar
  51. 51.
    Kliment V, Tölgyessy J (1971) Beitrag zur kontinuierlichen Aktivierungsanalyse strömender Lösungen. I. Theorie der kontinuierlichen Aktivierungsanalyse. Isotopenpraxis 7:446–448Google Scholar
  52. 52.
    Kliment V, Tölgyessy J (1972) Beitrag zur kontinuierliehen Neutronen-Aktivierungsanalyse strömender Lösungen. IV. Bestimmung von Silber und Vanadium. Isotopenpraxis 8:211–214Google Scholar
  53. 53.
    Kučera J (1976) Solvent extraction group separation scheme for neutron activation analysis of trace elements in biological materials. Radiochem Radioanal Lett 24:215–226Google Scholar
  54. 54.
    Kučera J, de Goeij JJM (1981) A comparison of two separation techniques using NaI(Tl) and Ge(Li) spectrometry for trace element determination in biological materials by neutron activation analysis. J Radioanal Chem 63:23–40Google Scholar
  55. 55.
    Kučera J (2007) Methodological developments and applications of neutron activation analysis. J Radiaoanal Nucl Chem 273:273–280Google Scholar
  56. 56.
    Kučera J, Zeisler R (2005) Low-level determination of silicon in biological materials using radiochemical neutron activation analysis. J Radioanal Nucl Chem 263:811–816Google Scholar
  57. 57.
    Byrne AR, Kučera J (1991) Radiochemical neutron activation analysis of traces of vanadium in biological samples: a comparison of prior dry ashing with post-irradiation wet ashing. Fresenius J Anal Chem 340:48–52Google Scholar
  58. 58.
    Kučera J, Bencko V, Tejral J, Borská L, Soukal L, Řanda Z (2004) Biomonitoring of occupational exposure: neutron activation determination of selected metals in the body tissues and fluids of workers manufacturing stainless steel vessels. J Radioanal Nucl Chem 259:7–11Google Scholar
  59. 59.
    Kučera J, Soukal L, Faltejsek J (1986) Low level determination of manganese in biological reference materials by neutron activation analysis. J Radioanal Nucl Chem 107:361–369Google Scholar
  60. 60.
    Mizera J, Řanda Z, Kučera J (2008) Determination of silver in biological reference materials by neutron activation analysis. J Radioanal Nucl Chem 278:599–602Google Scholar
  61. 61.
    Kučera J, Řanda Z, Soukal L (2001) A comparison of three activation analysis methods for iodine determination in foodstuffs. J Radioanal Nucl Chem 249:61–65Google Scholar
  62. 62.
    Kučera J, Iyengar GV, Řanda Z, Parr RM (2004) Determination of iodine in Asian diet samples by epithermal and radiochemical neutron activation analysis. J Radioanal Nucl Chem 259:505–509Google Scholar
  63. 63.
    Krausová I, Kučera J, Světlík I (2013) Determination of 129I in biomonitors collected in the vicinity of a nuclear power plant by neutron activation analysis. J Radioanal Nucl Chem 295:2043–2048Google Scholar
  64. 64.
    Kučera J, Byrne AR, Mizera J, Lučaníková M, Řanda Z (2006) Development of a radiochemical neutron activation analysis procedure for determination of rhenium in biological and environmental samples at ultratrace level. J Radioanal Nucl Chem 269:251–257Google Scholar
  65. 65.
    Mizera J, Kučera J, Řanda Z, Lučaníková M (2006) Advanced liquid and solid extraction procedures for ultratrace determination of rhenium by radiochemical neutron activation analysis. Czech J Phys 56(Suppl D):D315–D321Google Scholar
  66. 66.
    Kučera J, Drobník J (1982) Determination of platinum in urine and serum after the administration of cisplatin by neutron activation analysis. J Radioanal Chem 75:71–80Google Scholar
  67. 67.
    Kučera J, Vobecký M, Soukal L, Zákoucký D, Vénos D (1997) Low level determination of thallium in biological and environmental reference materials by RNAA using several counting methods. J Radioanal Nucl Chem 217:131–137Google Scholar
  68. 68.
    Kučera J, Kameník J, Povinec PP (2017) Radiochemical separation of mostly short-lived neutron activation products. J Radioanal Nucl Chem 311:1299–1307Google Scholar
  69. 69.
    Kučera J, Kameník J, Povinec PP (2017) Determination of ultra-trace levels of Th and U in components of SuperNEMO detector by radiochemical neutron activation analysis. In: Proceedings of 6th Asia-Pacific symposium on radiochemistry (APSORC-2017), Jeju Island, Korea, 17–22 Sept 2017Google Scholar
  70. 70.
    Řanda Z, Kučera J, Soukal L (2003) Elemental characterization of the new Czech meteorite “Morávka“by neutron and photon activation analysis. J Radioanal Nucl Chem 257:275–283Google Scholar
  71. 71.
    Mizera J, Řanda Z, Košták M (2010) Neutron activation analysis in geochemical characterization of Jurassic-Cretaceous sedimentary rocks from the Nordvik Penninsula. J Radioanal Nucl Chem 284:211–219Google Scholar
  72. 72.
    Kučera J, Soukal L (1993) Determination of As, Cd, Cu, Hg, Mo, Sb, and Se in biological reference materials by radiochemical neutron activation analysis. J Radioanal Nucl Chem 168:185–199Google Scholar
  73. 73.
    Kučera J, Byrne AR (1993) Nickel determination in biological materials at ultratrace level by fast neutron radiochemical activation analysis. J Radioanal Nucl Chem 168:201–213Google Scholar
  74. 74.
    Alamin MB, Bejey AM, Kučera J, Mizera J (2006) Determination of mercury and selenium in consumed food items in Libya using instrumental and radiochemical NAA. J Radioanal Nucl Chem 270:143–146Google Scholar
  75. 75.
    Kučera J, Mizera J, Repinc U, Smodiš B (2006) Simultaneous low-level determination determination of iodine and manganese by radiochemical neutron activation analysis. Czech J Phys 56(Suppl D):D151–D157Google Scholar
  76. 76.
    Kučera J, Krausová I (2007) Fast decomposition of biological and other materials for radiochemical activation analysis: a radiochemical study of element recoveries following alkaline-oxidative fusion. J Radioanal Nucl Chem 271:577–580Google Scholar
  77. 77.
    Kučera J, Bode P, Štěpánek V (2000) The 1993 ISO Guide to the expression of uncertainty in measurement applied to NAA. J Radioanal Nucl Chem 245:115–122Google Scholar
  78. 78.
    Lučaníková M, Kučera J, Šebesta F, John J (2006) Use of new composite materials for the determination of Cu, Cd, Mo, As and Sb in biological samples by radiochemical neutron activation analysis. J Radioanal Nucl Chem 269:463–468Google Scholar
  79. 79.
    Kučera J, Frána J, Horák Z, Marek M, Tomášek F, Viereibl L (1999) Calibration of the reactor neutron spectrum for the k 0-NAA standardization using several approaches. Czech J Phys 49(S1):295–301Google Scholar
  80. 80.
    Vermaercke P, Robouch P, Eguskiza M, De Corte F, Kennedy G, Smodiš B, Jaćimović R, Yonezawa C, Matsue H, Lin X, Blaauw M, Kučera J (2006) Characterisation of synthetic multi-element standards (SMELS) used for the validation of k 0-NAA. Nucl Instrum Methods A 564:675–682Google Scholar
  81. 81.
    Kubešová M, Kučera J (2010) Validation of k 0 standardization method in neutron activation analysis—the use of Kayzero for Windows programme at the Nuclear Physics Institute, Řež. Nucl Instrum Methods A 622:403–406Google Scholar
  82. 82.
    Kubešová M, Kučera J (2011) Comparison of Kayzero forWindows and k0-IAEA software packages for k 0 standardization in neutron activation analysis. Nucl Instrum Methods A 654:206–212Google Scholar
  83. 83.
    Kubešová M, Kučera J, Fikrle M (2012) Inconsistencies of neutron flux parameters for k 0 standardization in neutron activation analysis determined with the use of Au + Zr and Au + Mo + Cr monitor sets at the LVR-15 reactor in Řež. J Radioanal Nucl Chem 293:665–674Google Scholar
  84. 84.
    Kubešová M, Kučera J, Fikrle M (2011) A new monitor set for the determination of neutron flux parameters in short-time k 0-NAA. Nucl Instrum Methods A 656:61–64Google Scholar
  85. 85.
    Kubešová M, Krausová I, Kučera J (2014) Verification of k 0-NAA results at the LVR-15 reactor in Řež with the use of Au + Mo + Rb(+Zn) monitor set. J Radioanal Nucl Chem 300:473–480Google Scholar
  86. 86.
    Kubešová M, Kučera J (2012) How to calculate uncertainties of neutron flux parameters and uncertainties of analysis results in k 0-NAA? J Radioanal Nucl Chem 293:87–94Google Scholar
  87. 87.
    Kučera J, Kubešová M, Lebeda O (2018) Improvement of the Ca determination accuracy with k 0-INAA using an HPGe coaxial detector with extended energy range efficiency calibration. J Radioanal Nucl Chem 315:671–675Google Scholar
  88. 88.
    Řanda Z, Špaček B, Kuncíř J, Benada J (1981) Nondestructive gamma activation analysis of mineral materials. Czechoslovak Atomic Energy Commission, Nuclear Information Centre, PragueGoogle Scholar
  89. 89.
    Řanda Z, Kreisinger F (1983) Tables of nuclear constants for gamma activation analysis. J Radioanal Chem 77:279–495Google Scholar
  90. 90.
    Řanda Z, Špaček B, Mizera J (2007) Fast determination of gold in large samples of gold ores by photoexcitation reactions using 10 MeV bremsstrahlung. J Radioanal Nucl Chem 271:603–606Google Scholar
  91. 91.
    Řanda Z, Kučera J, Mizera J, Frána J (2007) Comparison of the role of photon and neutron activation analyses for elemental characterization of geological, biological and environmental materials. J Radioanal Nucl Chem 271:589–596Google Scholar
  92. 92.
    Krausová I, Mizera J, Řanda Z, Chvátil D, Krist P (2015) Nondestructive assay of fluorine in geological and other materials by instrumental photon activation analysis with a microtron. Nucl Instrum Methods B 342:82–86Google Scholar
  93. 93.
    Krausová I, Mizera J, Dostálek P, Řanda Z (2018) Non-destructive determination of nitrogen in malting barleys by instrumental photon activation analysis and its comparison with the Dumas method. J Inst Brew 124:4–8Google Scholar
  94. 94.
    Mádlíková M, Krausová I, Mizera J, Táborský J, Faměra O, Chvátil D (2018) Nitrogen assay in winter wheat by short-time instrumental photon activation analysis and its comparison with the Kjeldahl method. J Radioanal Nucl Chem.  https://doi.org/10.1007/s10967-018-5881-6 CrossRefGoogle Scholar
  95. 95.
    Havránek V, Kučera J, Řanda Z, Voseček V (2004) Comparison of fluorine determination in biological and environmental samples by NAA, PAA and PIGE. J Radioanal Nucl Chem 259:325–329Google Scholar
  96. 96.
    Řanda Z, Kučera J, Soukal L (2001) Possibilities of simultaneous determination of lead and thallium in environmental and biological samples by microtron activation analysis with radiochemical separation. J Radioanal Nucl Chem 248:149–154Google Scholar
  97. 97.
    Krausová I (2015) Short-lived products of photonuclear reactions using microtron and their utilization in photon activation analysis. PhD thesis, Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering (in Czech)Google Scholar
  98. 98.
    Obrusník I, Stárková B, Blažek J (1976) Instrumental neutron activation analysis of fly ashes and emissions. J Radioanal Chem 31:495–502Google Scholar
  99. 99.
    Obrusník I, Stárková B, Blažek J, Bencko V (1979) Instrumental neutron activation analysis of fly ash, aerosols and hair. J Radioanal Chem 54:311–324Google Scholar
  100. 100.
    Chatt A, Katz SA (1988) Hair analysis: applications in the biomedical and environmental sciences. VCH Publishers, New YorkGoogle Scholar
  101. 101.
    Obrusník I (1986) Activation analysis of human hair as a tool for environmental pollution monitoring. J Hyg Epidemiol Microbiol Immunol 30:11–25PubMedGoogle Scholar
  102. 102.
    Bencko V (2005) In: Tobin DJ (ed) Hair in toxicology: an important biomonitor. The Royal Society of Chemistry, Cambridge, pp 89–103Google Scholar
  103. 103.
    Obrusník I, Bencko V (1979) INAA study on trace elements in hair of 3 selected population groups in Czechoslovakia. Radiochem Radioanal Lett 38:189–195Google Scholar
  104. 104.
    Obrusník I, Skřivánek O, Umlaufová M, Hovorka V (1985) Neutron activation analysis of neonate and maternal hair samples in areas with different levels of pollution. J Radioanal Nucl Chem 89:561–570Google Scholar
  105. 105.
    Rakovič M, Latýnová E, Foltýnová V, Výborný S, Kučera J, Pilecká N, Glagoličová A (1996) Feasibility of using INAA for biomonitoring of heavy metals and other elements in human ectoderm derivatives. J Radioanal Nucl Chem 212:281–286Google Scholar
  106. 106.
    Obrusník I, Paukert J (1984) Indication of environmental pollution by means of INAA of the hair of some free living mammals. J Radioanal Nucl Chem 83:397–406Google Scholar
  107. 107.
    Mohamed NK, Ntarisa AVR, Makundi IN, Kučera J (2016) Impact of North Mara gold mine on the element contents in fish from the river Mara, Tanzania. J Radioanal Nucl Chem 309:421–427Google Scholar
  108. 108.
    Esen AN, Kubešová M, Haciyakupoglu S, Kučera J (2016) Instrumental neutron activation analysis of plant tissues and soils for biomonitoring in urban areas in Istanbul. J Radioanal Nucl Chem 309:373–382Google Scholar
  109. 109.
    Bitewlign TA, Chaubey AK, Beyene GA, Melikegnaw TH, Mizera J, Kameník J, Krausová I, Kučera J (2017) Instrumental neutron activation analysis of environmental samples from a region with prevalence of population disabilities in the North Gondar, Ethiopia. J Radioanal Nucl Chem 311:2047–2059Google Scholar
  110. 110.
    Spěváčková V, Kučera J (1989) Trace element speciation in contaminated soils studied by atomic absorption spectrometry and neutron activation analysis. Intern J Environ Anal Chem 35:241–251Google Scholar
  111. 111.
    Schwarz J, Smolík J, Veselý V, Sýkorová I, Kučera J (1996) Particulate emissions from the fluidized bed combustion of brown coal. J Aerosol Sci 27(Suppl 1):S359–S360Google Scholar
  112. 112.
    Smolík J, Schwarz J, Veselý V, Sýkorová I, Kučera J, Havránek V (1999) Characterization of solid emissions from atmospheric fluidized-bed combustion of two Czech Lignites. Environ Sci Technol 33:3543–3551Google Scholar
  113. 113.
    Kučera J, Havránek V, Smolík J, Schwarz J, Veselý V, Kugler J, Sýkorová I, Šantroch J (1999) INAA and PIXE of atmospheric and combustion aerosols. Biol Trace Elem Res 71–72:233–245PubMedGoogle Scholar
  114. 114.
    Havránek V, Kučera J, Horáková J, Voseček V, Smolík J, Schwarz J, Sýkorová I (1999) Matrix effects in PIXE analysis of aerosols and ashes. Biol Trace Elem Res 71–72:431–442PubMedGoogle Scholar
  115. 115.
    Sysalová J, Kučera J, Fikrle M, Drtinová B (2013) Determination of the total mercury in contaminated soils by direct solid sampling atomic absorption spectrometry using an AMA-254 device and radiochemical neutron activation analysis. Microchem J 110:691–694Google Scholar
  116. 116.
    Sysalová J, Kučera J, Drtinová B, Červenka R, Zvěřina O, Komárek J, Kameník J (2017) Mercury species in formerly contaminated soils and released soil gases. Sci Total Environ 584–585:1032–1039PubMedGoogle Scholar
  117. 117.
    Kučera J, Mizera J, Řanda Z, Vávrová M (2007) Pollution of agricultural crops with lantanides, thorium and uranium studied by instrumental and radiochemical neutron activation analysis. J Radioanal Nucl Chem 271:581–587Google Scholar
  118. 118.
    Hou XL, Dahlgaard H, Nielsen SP, Kučera J (2002) Level and origin of iodine-129 in the Baltic Sea. J Environ Radioact 61:331–343PubMedGoogle Scholar
  119. 119.
    Hou X, Malenchenko AF, Kučera J, Dahlgaard H, Nielsen SP (2003) Iodine-129 in thyroid and urine in Ukraine and Denmark. Sci Total Environ 302:63–73PubMedGoogle Scholar
  120. 120.
    Hou XL, Fogh CL, Kučera J, Andersson KG, Dahlgaard H, Nielsen SP (2003) Iodine-129 and caesium-137 in Chernobyl contaminated soil and their chemical fractionation. Sci Total Environ 308:97–109PubMedGoogle Scholar
  121. 121.
    Kučera J, Senft V, Hůzl F, Soukal L (1988) Cadmium and zinc determination by neutron activation analysis and biochemical tests in tissues of workers professionally exposed to cadmium. J Radioanal Nucl Chem 122:361–372Google Scholar
  122. 122.
    Kučera J, Bencko V, Pápayová A, Šaligová D, Tejral J, Borská L (2001) Monitoring of occupational exposure in manufacturing of stainless steel constructions. Part I: chromium, iron, manganese, molybdenum, nickel and vanadium in the workplace air of stainless steel welders. Cent Eur J Public Health 9:171–175PubMedGoogle Scholar
  123. 123.
    Kučera J, Lener J, Soukal L, Horáková J (1996) Air pollution and biological monitoring of environmental exposure to vanadium using short-time neutron activation analysis. J Trace Microprobe Techn 14:191–201Google Scholar
  124. 124.
    Kučera J, Byrne AR, Mravcová A, Lener J (1992) Vanadium levels in hair and blood of normal and exposed persons. Sci Total Environ 15:191–205Google Scholar
  125. 125.
    Kučera J, Lener J, Mňuková J, Bayerová E (1998) In: Nriagu JO (ed) Vanadium in the environment, part 2: health effects. Wiley, New York, pp 55–73Google Scholar
  126. 126.
    Sabbioni E, Kučera J, Pietra R, Vesterberg O (1996) A critical review on normal concentrations of vanadium in human blood, serum, and urine. Sci Total Environ 188:49–58PubMedGoogle Scholar
  127. 127.
    Vobecký M, Frána J, Bauer J, Řanda Z, Benada J, Kuncíř J (1971) In: Proceedings of second lunar sci conference, vol 2, Houston, MIT Press. Geochim Cosmochim Acta 35(Suppl 2):1291–1300Google Scholar
  128. 128.
    Vobecký M, Frána J, Řanda Z, Benada J, Kuncíř J (1971) Analytical possibilities of reactor neutron activation method in non-destructive analysis of meteorites. Radiochem Radioanal Lett 6:237–247Google Scholar
  129. 129.
    Kaizer J, Kučera J, Kameník J, Porubčan V, Povinec PP (2017) Determination of elemental composition of the Rumanová, Uhrovec, Vel’ké Borové, Košice and Chelyabinsk chondrites by instrumental neutron activation analysis. J Radioanal Nucl Chem 311:2085–2096Google Scholar
  130. 130.
    Bischoff A, Jersek M, Grau T, Mirtic B, Ott U, Kučera J, Horstmann M, Lauberstein M, Herrmann S, Řanda Z, Weber M, Heusser G (2011) Jesenice—a new meteorite fall from Slovenia. Meteorit Planet Sci 46:793–804Google Scholar
  131. 131.
    Bouška V, Benada J, Řanda Z, Kuncíř J (1973) Geochemical evidence for origin of moldavites. Geochim Cosmochim Acta 37:121–131Google Scholar
  132. 132.
    Skála R, Mizera J, Řanda Z, Žák K, Džiková L (2010) Statistical evaluation of a set of geochemical data from a large collection of moldavites measured by INAA and IPAA. Meteorit Planet Sci 45(Suppl S):A190–A190Google Scholar
  133. 133.
    Žák K, Skála R, Řanda Z, Mizera J, Heissing K, Ackerman L, Ďurišová J, Jonášová Š, Kameník J, Magna T (2016) Chemistry of Tertiary sediments in the surroundings of the Ries impact structure and moldavite formation revisited. Geochim Cosmochim Acta 179:287–311Google Scholar
  134. 134.
    Řanda Z, Mizera J, Frána J, Kučera J (2008) Geochemical characterization of moldavites from a new locality, the Cheb Basin, Czech Republic. Meteorit Planet Sci 43:461–477Google Scholar
  135. 135.
    Žák K, Skála R, Řanda Z, Mizera J (2012) A review of volatile compounds in tektites, and carbon content and isotopic composition of moldavite glass. Meteorit Planet Sci 47:1010–1028Google Scholar
  136. 136.
    Kučera J, Knobloch V (1982) Instrumental neutron activation analysis of lechatelierite inclusions from moldavites. Radiochem Radioanal Lett 54:197–208Google Scholar
  137. 137.
    Knobloch V, Kučera J (1996) Trace elements in quartz grains from the Ries impact crater and lechatelierites from southern Bohemian moldavites. Chem Erde Geochem 56:487–492Google Scholar
  138. 138.
    Mizera J, Řanda Z, Kameník J (2016) On a possible parent crater for Australasian tektites. Earth Sci Rev 154:123–137Google Scholar
  139. 139.
    Mizera J, Řanda Z, Tomandl I (2012) Geochemical characterization of impact glasses from the Zhamanshin crater by various modes of activation analysis. Remarks on genesis of irghizites. J Radioanal Nucl Chem 293:359–376Google Scholar
  140. 140.
    Mizera J, Řanda Z, Krausová I (2017) Neutron and photon activation analyses in geochemical characterization of Libyan Desert Glass. J Radioanal Nucl Chem 311:1465–1471Google Scholar
  141. 141.
    Řanda Z, Frána J, Mizera J, Kučera J, Novák JK, Ulrych J, Belov AG, Maslov OD (2007) Instrumental neutron and photon activation analysis in the geochemical study of phonolitic and trachytic rocks. Geostand Geoanal Res 31:275–283Google Scholar
  142. 142.
    Mizera J, Řanda Z (2009) Neutron and photon activation analyses in geochemical characterization of sediment profiles at the Jurassic-Cretaceous boundary. J Radioanal Nucl Chem 282:53–57Google Scholar
  143. 143.
    Vandenberghe D, De Corte F, Buylaert J-P, Kučera J, Van den Haute P (2008) On the internal radioactivity in quartz. Radiat Meas 43:771–775Google Scholar
  144. 144.
    Bártová H, Kučera J, Musílek L, Trojek T (2014) Comparative analysis of dose rates in bricks determined by neutron activation analysis, alpha counting and X-ray fluorescence analysis for the thermoluminescence fine grain dating method. Radiat Phys Chem 104:393–397Google Scholar
  145. 145.
    Bártová H, Kučera J, Musílek L, Trojek T, Gregorová E (2017) Determination of U, Th and K in bricks by gamma-spectrometry, X-ray fluorescence analysis and neutron activation analysis. Radiat Phys Chem 140:161–166Google Scholar
  146. 146.
    Řanda Z, Kučera J (2004) Trace elements in higher fungi (mushrooms) determined by activation analysis. J Radioanal Nucl Chem 259:99–107Google Scholar
  147. 147.
    Řanda Z, Soukal L, Mizera J (2005) Possibilities of the short-term thermal and epithermal neutron activation for analysis of macromycetes (mushrooms). J Radioanal Nucl Chem 264:67–76Google Scholar
  148. 148.
    Borovička J, Řanda Z, Jelínek E (2006) Antimony content of macrofungi from clean and polluted areas. Chemosphere 64:1837–1844PubMedGoogle Scholar
  149. 149.
    Borovička J, Řanda Z (2007) Distribution of iron, cobalt, zinc and selenium in macrofungi. Mycol Prog 6:249–259Google Scholar
  150. 150.
    Borovička J, Řanda Z, Jelínek E, Kotrba P, Dunn CE (2007) Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella. Mycol Res 111:1339–1344PubMedGoogle Scholar
  151. 151.
    Borovička J, Kotrba P, Gryndler M, Mihaljevic M, Řanda Z, Rohovec J, Cajthaml T, Stijve T, Dunn CE (2010) Bioaccumulation of silver in ectomycorrhizal and saprobic macrofungi from pristine and polluted areas. Sci Total Environ 408:2733–2744PubMedGoogle Scholar
  152. 152.
    Borovička J, Dunn CE, Gryndler M, Mihaljevic M, Jelínek E, Rohovec J, Rohosková M, Řanda Z (2010) Bioaccumulation of gold in macrofungi and ectomycorrhizae from the vicinity of the Mokrsko gold deposit. Soil Biol Biochem 42:83–91Google Scholar
  153. 153.
    Borovička J, Kubrová J, Rohovec J, Dunn CE (2011) Uranium, thorium and rare earth elements in macrofungi: what are the genuine concentrations? Biometals 24:837–845PubMedGoogle Scholar
  154. 154.
    Cejpková J, Gryndler M, Hršelová H, Kotrba P, Řanda Z, Synková I, Borovička J (2016) Bioaccumulation of heavy metals, metalloids and chlorine in ectomycorrhizae from smelter-polluted area. Environ Pollut 218:176–185PubMedGoogle Scholar
  155. 155.
    Borovička J, Braeuer S, Sácký J, Kameník J, Goessler W, Trubač J, Strnad L, Rohovec J, Leonhardt T, Kotrba P (2019) Speciation analysis of elements accumulated in Cystoderma carcharias from clean and smelter-polluted sites. Sci Total Environ 648:1570–1581PubMedGoogle Scholar
  156. 156.
    Kameník J, Mizera J, Řanda Z (2013) Chemical composition of plant silica phytolits. Environ Chem Lett 11:189–195Google Scholar
  157. 157.
    Rakovič M, Kučera J, Pilecká N, Povýšil C (1992) Determination of the sodium-to-calcium ratio in sections of the undecalcified bone tissue by neutron activation analysis. J Radioanal Nucl Chem 165:41–48Google Scholar
  158. 158.
    Rakovič M, Foltýnová V, Pilecká N, Povýšil C, Kučera J (1995) Sodium-to-calcium ratio in sections of human male individuals of different age categories as determined by INAA. J Radioanal Nucl Chem 200:205–209Google Scholar
  159. 159.
    Rakovič M, Kučera J, Pilecká N, Polívková J (1994) Determination of sodium-to-calcium ratio in mouse femora by INAA. Biol Trace Elem Res 43(45):323–326PubMedGoogle Scholar
  160. 160.
    Rakovič M, Broulík P, Kučera J, Foltýnová V, Pilecká N (1995) Determination of the sodium-to-calcium ratio in femora of normal and diabetic rats by INAA. J Radioanal Nucl Chem 199:471–476Google Scholar
  161. 161.
    Foltýnová V, Voska L, Povýšil C, Kučera J, Pilecká N, Rakovič M (1995) A comparison of sodium amounts in compact bone, red marrow and yellow marrow sections as determined by instrumental neutron activation analysis. J Radioanal Nucl Chem 201:477–480Google Scholar
  162. 162.
    Kvíčala J, Zamrazil V, Čeřovská J, Bednář J, Janda J (1995) Evaluation of selenium supply and status of inhabitants in 3 selected rural and urban regions of the Czech Republic. Biol Trace Elem Res 47:365–375PubMedGoogle Scholar
  163. 163.
    Kvíčala J, Zamrazil V, Němeček J, Jiránek V (2008) Selenium status of South Bohemian seniors characterized by INAA of blood serum. J Radioanal Nucl Chem 278:537–541Google Scholar
  164. 164.
    Kvíčala J, Zamrazil V, Němeček J, Anke M (2008) Intake of selenium by seniors of South Bohemia and urine selenium of seniors in the course of a 1-year supplementation by various selenium species. Trace Elem Electrolytes 25:21–24Google Scholar
  165. 165.
    Kvíčala J, Zamrazil V, Němeček J, Jiránek V (2010) Influence of age on selenium status in the course of supplementation. Trace Elem Electrolytes 27:220–224Google Scholar
  166. 166.
    Kvíčala J, Zamrazil V, Němeček J, Jiránek V (2011) Influence of of long-term supplementation by various quantities of yeast-bound selenium upon selenium status of South Bohemia seniors. Trace Elem Electrolytes 28:11–17Google Scholar
  167. 167.
    Kvíčala J, Hrdá P, Zamrazil V, Němeček J, Hill M, Jiránek V (2009) Effect of selenium supplementation on thyroid antibodies. J Radioanal Nucl Chem 280:275–279Google Scholar
  168. 168.
    Kvíčala J, Havelka J, Zeman J, Němec J (1991) Determination of some trace elements in the thyroid gland by INAA. J Radioanal Nucl Chem 149:267–274Google Scholar
  169. 169.
    Kvíčala J, Jiránek V (1999) INAA of serum zinc of inhabitants in five regions of the Czech Republic. Biol Trace Elem Res 71–72:21–30PubMedGoogle Scholar
  170. 170.
    Kranda K, Kučera J, Bäurle J (2006) Trace elements monitored with neutron activation analysis during neurodegeneration in brains of mutant mice. J Radioanal Nucl Chem 269:555–559Google Scholar
  171. 171.
    Bäurle J, Kučera J, Frischmuth S, Lambertz M, Kranda K (2009) Dynamics of trace element concentration during development and excitotoxic cell death in the cerebellum of Lurcher mutant mice. Brain Pathol 19:586–595PubMedGoogle Scholar
  172. 172.
    Galinha C, Freitas MC, Pacheco AMG, Kameník J, Kučera J, Anawar HM, Coutinho J, Maçãs B, Almeida AS (2012) Selenium determination in cereal plants and cultivation soils by radiochemical neutron activation analysis. J Radioanal Nucl Chem 294:349–354Google Scholar
  173. 173.
    Galinha C, Pacheco AMG, Freitas MC, Fikrle M, Kučera J, Coutinho J, Maçãs B, Almeida AS, Wolterbeek HT (2015) Selenium in bread and durum wheats grown under a soil supplementation regime in actual field conditions, determined by cyclic and radiochemical neutron activation analysis. J Radioanal Nucl Chem 304:139–143Google Scholar
  174. 174.
    Kučera J, Kameník J (2015) Improving iodine homogeneity in NIST SRM 1548a typical diet by cryogenic grinding. Accredit Qual Assur 20:189–194Google Scholar
  175. 175.
    Krausová I, Cejnar R, Kučera J, Dostálek P (2014) Impact of the brewing process on the concentration of silicon in lager beer. J Inst Brew 120:433–437Google Scholar
  176. 176.
    Kučera J, Kubešová M, Bartoníček B (2014) Determination of elemental impurities in polymer materials of electrical cables of safety systems of nuclear power plants by k 0-INAA. J Radioanal Nucl Chem 300:685–691Google Scholar
  177. 177.
    Kučera J, Cabalka M, Ferencei J, Kubešová M, Strunga V (2016) Determination of elemental impurities in polymer materials of electrical cables for use in safety systems of nuclear power plants and for data transfer in the Large Hadron Collider by instrumental neutron activation analysis. J Radioanal Nucl Chem 309:1341–1348Google Scholar
  178. 178.
    Kameník J, Dragounová K, Kučera J, Bryknar Z, Trepakov VA, Strunga V (2017) Determination of vanadium in titanate-based ferroelectrics by INAA with discriminating gamma-ray spectrometry. J Radioanal Nucl Chem 311:1333–1338Google Scholar
  179. 179.
    Kameník J, Amsil H, Kučera J (2015) Determination of elemental impurities in phosphoric acid by INAA employing a novel method of phosphate precipitation. J Radioanal Nucl Chem 304:157–162Google Scholar
  180. 180.
    Wong CHA, Sofer Z, Kubešová M, Kučera J, Matějková S, Pumera M (2014) Synthetic routes contaminate graphene materials with a whole spectrum of unanticipated metallic elements. Proc Natl Acad Sci 111:13774–13779PubMedGoogle Scholar
  181. 181.
    Kameník J, Simões FRF, Costa PMFJ, Kučera J, Havránek V (2018) INAA and ion-beam analysis of elemental admixtures in carbon-based nanomaterials for battery electrodes. J Radioanal Nucl Chem.  https://doi.org/10.1007/s10967-018-6200-y CrossRefGoogle Scholar
  182. 182.
    Kučera J, Novák JK, Kranda K, Poncar J, Krausová I, Soukal L, Cunin O, Lang M (2008) INAA and petrological study of sandstones from the Angkor monuments. J Radioanal Nucl Chem 278:299–306Google Scholar
  183. 183.
    Kmošek J, Odler M, Fikrle M, Kochergina YV (2018) Invisible connection. Early Dynastic and Old Kingdom Egyptian metalwork in the Egyptian Museum of Leipzig University. J Archeol Sci 96:191–207Google Scholar
  184. 184.
    Rasmussen KL, Kučera J, Skytte L, Kameník J, Havránek V, Smolík J, Velemínský P, Lynnerup N, Bruzek J, Vellev J (2013) Was he murdered or was he not?—Part I: analyses of mercury in the remains of Tycho Brahe. Archaeometry 55:1187–1195Google Scholar
  185. 185.
    Kučera J, Rasmussen KL, Kameník J, Kubešová M, Skytte L, Povýšil C, Karpenko V, Havránek V, Velemínský P, Lynnerup N, Bruzek J, Smolík J, Vellev J (2017) Was he murdered or was he not?—Part II: multi-elemental analyses of hair and bone samples from Tycho Brahe and histopathology of his bones. Archaeometry 59:918–933Google Scholar
  186. 186.
    Greenberg RR, Bode P, Fernandes EADN (2011) Neutron activation analysis: a primary method of measurement. Spectrochim Acta Part B 66:193–241Google Scholar
  187. 187.
    Kučera J, Soukal L (1988) Homogeneity tests and certification analyses of coal fly ash reference materials by instrumental neutron activation analysis. J Radioanal Nucl Chem 121:245–259Google Scholar
  188. 188.
    Kučera J, Soukal L (1989) Homogeneity tests and certification analyses of the IRANT coal fly ash reference material ECO by instrumental neutron activation analysis. J Radioanal Nucl Chem 134:209–219Google Scholar
  189. 189.
    Kučera J, Soukal L (1993) Neutron activation analysis of new botanical reference materials—part II: evaluation of Czechoslovak green algae, lucerne, wheat and rye bread flour. Fresenius J Anal Chem 345:193–197Google Scholar
  190. 190.
    Kučera J, Mader P, Miholová D, Cibulka J, Poláková M, Kordík D (1990) Preparation of the Bovine Liver 12-02-01 reference material and the certification of element contents from an interlaboratory comparison. Fresenius J Anal Chem 338:66–71Google Scholar
  191. 191.
    Kučera J, Mader P, Miholová D, Cibulka J, Faltejsek J, Kordík D (1995) Preparation of the bovine kidney and bovine muscle reference materials and the certification of element contents from interlaboratory comparisons. Fresenius J Anal Chem 352:66–72Google Scholar
  192. 192.
    Kučera J, Sychra V, Horáková J, Soukal L (1997) Use of INAA in the preparation of a set of soil reference materials with certified values of total element contents. J Radioanal Nucl Chem 215:147–155Google Scholar
  193. 193.
    Kučera J, Sychra V, Koubek J (1998) A set of four soil reference materials with certified values of total element contents and their extractable fractions. Fresenius J Anal Chem 360:402–405Google Scholar
  194. 194.
    Kučera J (1995) Elemental characterization of new Polish and U.S. NIST geological, environmental and biological reference materials by neutron activation analysis and comments on the methodology of interlaboratory comparisons. Chem Anal (Warsaw) 40:405–421Google Scholar
  195. 195.
    De Goeij JJM, Kosta L, Byrne AR, Kučera J (1983) Problems in current procedures for establishing recommended values of trace-element levels in biological reference materials, illustrated by IAEA Milk Powder A-11. Anal Chim Acta 146:161–169Google Scholar
  196. 196.
    Zeisler R, Deckner R, Zeiller E, Doucha J, Mader P, Kučera J (1998) Single cell green algae reference materials with managed levels of heavy metals. Fresenius J Anal Chem 360:429–432Google Scholar
  197. 197.
    Kučera J, Parr RM, Smodiš B, Fajgelj A, Mattiuzzi M, Havránek V (2000) Use of INAA, PIXE and XRF in homogeneity testing of new IAEA reference air filters. J Radioanal Nucl Chem 244:121–126Google Scholar
  198. 198.
    Kučera J, Smodiš B, Burns K, De Regge P, Campbell M, Havránek V, Makarewicz M, Toervenyi A, Zeiller E (2001) Preparation and characterization of a set of IAEA reference air filters for quality control in air-pollution studies. Fresenius J Anal Chem 370:229–233PubMedGoogle Scholar
  199. 199.
    Bacquart T, Moens A, Linsinger T (2014) Certification report. The certification of the gold mass fraction in Al–0.1% Au alloy: ERM®–EB530A, B, and C. EUR 26830 EN, Publication Office of the European Union, LuxembourgGoogle Scholar
  200. 200.
    Roebben G, Derbyshire M, Ingelbrecht C, Lamberty A (2006) Certification of uranium mass fraction in IRMM-540R and IRMM-541 uranium dopped glasses. Report EUR 22111EN, IRMM Geel, BelgiumGoogle Scholar
  201. 201.
    Kučera J, Soukal L, Horáková J (1993) Neutron activation of new botanical reference materials. Part I—US NIST apple and peach leaves SRMs. Fresenius J Anal Chem 345:188–192Google Scholar
  202. 202.
    US National Institute of Standards and Technology (2014) Certificate of analysis, Standard Reference Material® 1570a Trace Elements in Spinach Leaves. Gaithersburg, MD, 25 Feb 2014Google Scholar
  203. 203.
    US National Institute of Standards and Technology (2011) Certificate of analysis, Standard Reference Material® 2783 Air Particulate on Filter Media. Gaithersburg, MD, 13 Dec 2011Google Scholar
  204. 204.
    Kučera J, Soukal L (1998) Low uncertainty determination of manganese and vanadium in biological and environmental reference materials. Fresenius J Anal Chem 360:415–418Google Scholar
  205. 205.
    Zeisler R, Tomlin BE, Murphy KE, Kučera J (2009) Neutron activation analysis with pre- and post-irradiation chemical separation for the value assignments of Al, V, and Ni in the new bovine liver SRM 1577C. J Radioanal Nucl Chem 282:69–74Google Scholar
  206. 206.
    Kučera J, Bennett JW, Oflaz R, Paul RL, Fernandes EADN, Kubešová M, Bacchi MA, Stopic AJ, Sturgeon RE, Grinberg P (2015) Elemental characterization of single-wall carbon nanotube certified reference material by neutron and prompt γ activation analysis. Anal Chem 87:3699–3705PubMedGoogle Scholar
  207. 207.
    Mader P, Kučera J, Cibulka J, Miholová D (1989) Verification of liver decomposition and cadmium and lead determination by differential pulse anodic stripping voltammetry from interlaboratory experiment. Chem Listy 83:765–773 (in Czech) Google Scholar
  208. 208.
    Mader P, Száková J, Kučera J (1994) Interlaboratory analysis of IRM NSC-21 Compost Vitahum. Biol Trace Elem Res 43–45:633–641PubMedGoogle Scholar
  209. 209.
    Kučera J, Mader P, Miholová D, Száková J, Stejskalová I, Štěpánek V (1998) Proficiency tests using four batches of green alga with controlled levels of cadmium. Fresenius J Anal Chem 360:439–442Google Scholar
  210. 210.
    Sysalová J, Kučera J, Kotlík B, Havránek V (2002) Quality control materials for the determination of trace elements in airborne particulate matter. Anal Bioanal Chem 373:195–199PubMedGoogle Scholar
  211. 211.
    US National Institute of Standards and Technology (1998) Certificate of analysis, Standard Reference Material® 1648 Urban Particulate Matter. Gaithersburg, MD, 28 Apr 1998Google Scholar
  212. 212.
    US National Institute of Standards and Technology (2008) Report of investigation, Reference Material 8414 Bovine Muscle Powder, Gaithersburg, MD, 20 Feb 2008Google Scholar
  213. 213.
    Mizera J, Řanda Z (2010) Instrumental and photon activation analysis of selected geochemical reference materials. J Radioanal Nucl Chem 284:157–163Google Scholar
  214. 214.
    Kameník J, Kučera J, Borovička J (2015) Increase of sodium mass fraction in NIST standard reference materials 1515 apple leaves and 1547 peach leaves studied by INAA. In: 14th international conference on modern trends and activation analysis, Book of abstracts, Delft, The Netherlands, Aug 23–28 2015, p 61Google Scholar
  215. 215.
    Byrne AR, Kučera J (1997) Role of the self-validation principle of NAA in the quality assurance of bioenvironmental studies and in the certification of reference materials. In: Proceedings of international symposium on harmonization of health related environ measurements using nuclear and isotopic techniques, Hyderabad, India, 4–7 Nov 1996. IAEA, Vienna, pp 223–238Google Scholar
  216. 216.
    Kučera J, Kofroňová K (2011) Determination of As by instrumental neutron activation analysis in sectioned hair samples for forensic purposes: chronic or acute poisoning? J Radioanal Nucl Chem 287:769–772Google Scholar
  217. 217.
    Kučera J, Kameník J, Havránek V (2018) Hair elemental analysis for forensic science using nuclear and related analytical methods. Forensic Chem 7:65–74Google Scholar
  218. 218.
    Juna J, Konečný K, Vobecký M (1969) Nuclear reaction method for the determination of boron. Coll Czechoslov Chem Commun 34:1605–1611Google Scholar
  219. 219.
    Konečný K, Vobecký M, Juna J (1969) Non-destructive determination of boron in metallic alloys by means of a nuclear reaction. Jaderná energie 15:128–130 (in Czech) Google Scholar
  220. 220.
    Vobecký M, Juna J, Konečný K (1973) Determination of some lanthanides by the measurement of prompt gamma induced by neutrons. Radioisotopy 14:547–560 (in Czech) Google Scholar
  221. 221.
    Honzátko J, Tomandl I (2000) Boron concentration measurement system for the Czech BNCT project. AIP Conf Proc 579:749–750Google Scholar
  222. 222.
    Wang L, Sofer Z, Simek P, Tomandl I, Pumera M (2013) Boron-doped graphene: scalable and tunable p-type carrier concentration doping. J Phys Chem 117:23251–23257Google Scholar
  223. 223.
    Poh HL, Simek P, Sofer Z, Tomandl I, Pumera M (2013) Boron and nitrogen doping of grapheme via thermal exfoliation of graphite oxide in a BF3 or NH3 atmosphere: contrasting properties. J Mater Chem A 1:13146–13153Google Scholar
  224. 224.
    Viererbl L, Lahodová Z, Klupák V, Sus F, Kučera J, Kůs P, Marek M (2011) Transmutation detectors. Nucl Instrum Methods A 632:109–111Google Scholar
  225. 225.
    Tomandl I, Viererbl L, Lahodová Z, Klupák V, Fikrle M (2014) Determination of trace concentrations of transmuted stable nuclides in TMD detectors using PGAA. J Radioanal Nucl Chem 300:1141–1149Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Nuclear Physics Institute of the Czech Academy of SciencesHusinec-Řež 130Czech Republic

Personalised recommendations