Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 3, pp 2373–2379 | Cite as

Uptake of natural radionuclides from contaminated soil into vegetables and consequent dose assessment

  • Petra Planinšek
  • Borut SmodišEmail author
  • Ljudmila Benedik
Article
  • 85 Downloads

Abstract

Selected natural radionuclides from the uranium decay chain were determined in radish, savoy and rocket grown in uranium mill tailing contaminated growth substrates. The data obtained were used in calculation of dose assessment. Based on the results obtained for activity concentrations of four radionuclides (238U, 230Th, 226Ra and 210Pb) in vegetables, cultivated in contaminated soil, the committed effective doses, along with the maximum values for adults, were estimated. Statistical analyses of linear correlation among calculated annual effective ingestion dose and uranium mill tailings showed to be highly significant.

Keywords

NORM Plants Dose assessments Ingestion Uranium mill tailing 

Notes

Acknowledgements

This work was financially supported by the Slovenian Research Agency (contracts No. P2-0075 and P1-0143).

References

  1. 1.
    Tamponnet C, Martin-Garin A, Gonze M, Parekh N (2008) An overview of BORIS: bioavailability of radionuclides in soils. J Environ Radioact 99:820–830CrossRefGoogle Scholar
  2. 2.
    Štrok M, Smodiš B (2012) Transfer of natural radionuclides from hay and silage to cow’s milk in the vicinity of a former uranium mine. J Environ Radioact 110C:64–68CrossRefGoogle Scholar
  3. 3.
    Vera Tome F, Blanco Rodríguez M, Lozano J (2003) Soil-to-plant transfer factors for natural radionuclides and stable elements in a Mediterranean area. J Environ Radioact 65:161–175CrossRefGoogle Scholar
  4. 4.
    Vandenhove H, Verrezen F, Landa ER (2010) In: Atwood AD (ed) Radionuclides in the environment, 1st edn. Wiley, West SussexGoogle Scholar
  5. 5.
    Vreček P, Benedik L (2002) Determination of 210Pb and 210Po in sediments, water, and plants in an area contaminated with mine waste. Mine Water Environ 21:156–159CrossRefGoogle Scholar
  6. 6.
    Križman M, Byrne AR, Benedik L (1995) Distribution of 230Th in milling wastes from the Zirovski vrh uranium mine (Slovenia), and its radioecological implications. J Environ Radioact 26:223–235CrossRefGoogle Scholar
  7. 7.
    Benedik L, Rovan L, Klemenčič H, Gantar I, Prosen H (2015) Natural radioactivity in tap waters from the private wells in the surroundings of the former Žirovski Vrh uranium mine and the age-dependent dose assessment. Environ Sci Pollut Res 22:12062–12072CrossRefGoogle Scholar
  8. 8.
    International Commission on Radiological Protection (ICRP) (2012) Compendium of dose coefficients based on ICRP Publication 60. ICRP Publication 119. Ann ICRP 41:1–130Google Scholar
  9. 9.
    Avila R, Bergstroem U (2006) Methodology for calculation of doses to man and implementation in Pandora. SKB-R–06-68, SwedenGoogle Scholar
  10. 10.
    World Health Organization (WHO) (2011) Guidelines for drinking-water quality, 4th edn. WHO, Geneva. ISBN 978-92-4-154815-1Google Scholar
  11. 11.
    Duquène L, Vandenhove H, Tack F, Meers E, Baeten J, Wannijn J (2009) Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments. Sci Total Environ 407:1496–1505CrossRefGoogle Scholar
  12. 12.
    Liu D, Jiang W, Liu C, Xin C, Hou W (2000) Uptake and accumulation of lead by roots, hypocotyls and shoots of Indian mustard [Brassica juncea (L.)]. Bioresour Technol 71:273–277CrossRefGoogle Scholar
  13. 13.
    Soudek P, Petrová S, Benesová D, Kotyza J, Vágner M, Vanková R, Vanek T (2010) Study of soil-plant transfer of 226Ra under greenhouse conditions. J Environ Radioact 101:446–450CrossRefGoogle Scholar
  14. 14.
    Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological profiles. Toxicological Profile for Radium. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=791&tid=154. Accessed 06 Oct 2015
  15. 15.
    D’Antuono LF, Elementi S, Neri R (2009) Exploring new potential health-promoting vegetables: glucosinolates and sensory attributes of rocket salads and related Diplotaxis and Eruca species. J Sci Food Agric 89:713–722CrossRefGoogle Scholar
  16. 16.
    Planinšek P, Smodiš B, Benedik L (2016) Simultaneous determination and uptake assessment of selected radionuclides in plants grown in substrate contaminated with U-mill tailings. J Radioanal Nucl Chem 309:351–365CrossRefGoogle Scholar
  17. 17.
    Smodiš B, Černe M, Jaćimović R, Benedik L (2015) Transfer of uranium and radium to Chinese cabbage from soil containing elevated levels of natural radionuclides. J Radioanal Nucl Chem 306:685–694CrossRefGoogle Scholar
  18. 18.
    Vaupotič J, Bezek M, Kávási N, Ishikawa T, Yonehara H, Tokonami S (2012) Radon and thoron doses in kindergartens and elementary schools. Radiat Prot Dosim 152:247–252CrossRefGoogle Scholar
  19. 19.
    Pietrzak-Flis Z, Skowrońska-Smolak M (1995) Transfer of 210Pb and 210Po to plants via root system and above-ground interception. Sci Total Environ 162:139–147CrossRefGoogle Scholar
  20. 20.
    International Atomic Energy Agency (IAEA) (2014) Radiation protection and safety of radiation sources: international basic safety standards, general safety requirements. No. GSR Part 3. IAEA, Viena 2014Google Scholar
  21. 21.
    European Food Safety Authority (EFSA), The EFSA comprehensive European food consumption database: chronic food consumption statistics in grams per day per kilogram of body weight, All subjects. http://www.efsa.europa.eu/en/datexfoodcdb/datexfooddb. Accessed 14 Oct 2015
  22. 22.
    International Atomic Energy Agency (IAEA) Publications on exposure to radiation from natural sources. http://www-ns.iaea.org/tech-areas/rw-ppss/exposure-to-natural-radiation.asp?s=3. Accessed 03 Jun 2018
  23. 23.
    Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for the protection against the dangers arising from exposure to ionising radiation and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/EuratomGoogle Scholar
  24. 24.
    Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological profiles. Toxicological Profile for Uranium. https://www.atsdr.cdc.gov/toxprofiles/TP.asp?id=440&tid=77. Accessed 3 Jun 2018
  25. 25.
    Al-Kharouf SJ, Al-Hamarneh IF, Dababneh M (2008) Natural radioactivity, dose assessment and uranium uptake by agricultural crops at Khan Al-Zabeeb, Jordan. J Environ Radioact 99:1192–1199CrossRefGoogle Scholar
  26. 26.
    Shanthi G, Kumaran JTT, Raj GAG, Maniyan CG (2010) Natural radionuclides in the South Indian foods and their annual dose. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 619:436–440CrossRefGoogle Scholar
  27. 27.
    Carvalho FP, Oliveira JM, Malta M (2014) Intake of radionuclides with the diet in uranium mining areas. Procedia Earth Planet Sci 8:43–47CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Petra Planinšek
    • 1
  • Borut Smodiš
    • 2
    • 3
    Email author
  • Ljudmila Benedik
    • 2
    • 3
  1. 1.Slovenian Nuclear Safety AdministrationLjubljanaSlovenia
  2. 2.Jožef Stefan InstituteLjubljanaSlovenia
  3. 3.Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia

Personalised recommendations