Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 2, pp 1237–1242 | Cite as

Preliminary application of 125I–nivolumab to detect PD-1 expression in colon cancer via SPECT

  • Danni Li
  • Cheng Wang
  • Dakuan Zhang
  • Ye Peng
  • Shengnan Ren
  • Xiao LiEmail author
  • Changjing ZuoEmail author
Article
  • 106 Downloads

Abstract

The precise detection of PD-1/PD-L1 biomarkers helps to predict the prognosis of corresponding immunotherapy. 125I-labeled nivolumab targeting activated immune cells infiltrating the tumorous tissues was developed to evaluate the expression of PD-1 immune checkpoints. SPECT images indicated that 125I–nivolumab preferentially targeted to tumor-surrounded immune cells. This radiotracer can dynamically and quantitatively characterize the in vivo expression of immune checkpoints for colorectal cancer, thereby potentially enabling the early screening of patients, monitoring the efficacy of treatment, and assessing potential immunotoxicity.

Keywords

125Nivolumab PD-1 SPECT Colon cancer 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (81471714) and National Natural Science Foundation Youth Project (81701761).

References

  1. 1.
    Smyth MJ, Ngiow SF, Ribas A, Teng MW (2016) Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol 13:143–158CrossRefGoogle Scholar
  2. 2.
    Postel-Vinay S, Aspeslagh S, Lanoy E, Robert C, Soria JC, Marabelle A (2016) Challenges of phase 1 clinical trials evaluating immune checkpoint targeted antibodies. Ann Oncol 27:214–224CrossRefGoogle Scholar
  3. 3.
    Gentzler R, Hall R, Kunk PR, Gaughan E, Dillon P, Slingluff CL Jr., Rahma OE (2016) Beyond melanoma: inhibiting the PD-1/PD-L1 pathway in solid tumors. Immunotherapy 8:583–600CrossRefGoogle Scholar
  4. 4.
    Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, Bellmunt J, Burris HA, Petrylak DP, Teng SL, Shen X, Boyd Z, Hegde PS, Chen DS, Vogelzang NJ (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562CrossRefGoogle Scholar
  5. 5.
    Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, Chen L, Pardoll DM, Topalian SL, Anders RA (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20:5064–5074CrossRefGoogle Scholar
  6. 6.
    Herbst RS, Gordon MS, Fine GD (2013) A study of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic tumors. Cancer Res 73:LB-288CrossRefGoogle Scholar
  7. 7.
    Callahan MK, Postow MA, Wolchok JD (2016) Targeting T cell co-receptors for cancer therapy. Immunity 44:1069–1078CrossRefGoogle Scholar
  8. 8.
    Guan J, Lim KS, Mekhail T, Chang CC (2017) Programmed death ligand-1 (PD-L1) expression in the programmed death receptor-1 (PD-1)/PD-L1 blockade: a key player against various cancers. Arch Pathol Lab Med 141:851–861CrossRefGoogle Scholar
  9. 9.
    Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306CrossRefGoogle Scholar
  10. 10.
    Topalian SL, Weiner GJ, Pardoll DM (2011) Cancer immunotherapy comes of age. J Clin Oncol 29:4828–4836CrossRefGoogle Scholar
  11. 11.
    Lee CM, Tannock IF (2010) The distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab within solid tumors. BMC Cancer 10:255CrossRefGoogle Scholar
  12. 12.
    Mamalis A, Garcha M, Jagdeo J (2014) Targeting the PD-1 pathway: a promising future for the treatment of melanoma. Arch Dermatol Res 306:511–519CrossRefGoogle Scholar
  13. 13.
    Ehlerding EB, England CG, McNeel DG, Cai W (2016) Molecular imaging of immunotherapy targets in cancer. J Nucl Med 57:1487–1492CrossRefGoogle Scholar
  14. 14.
    Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589CrossRefGoogle Scholar
  15. 15.
    Heskamp S, Hobo W, Molkenboer-Kuenen JD, Olive D, Oyen WJ, Dolstra H, Boerman OC (2015) Noninvasive imaging of tumor PD-L1 expression using radiolabeled anti-PD-L1 antibodies. Cancer Res 75:2928–2936CrossRefGoogle Scholar
  16. 16.
    Josefsson A, Nedrow JR, Park S, Banerjee SR, Rittenbach A, Jammes F, Tsui B, Sgouros G (2016) Imaging, biodistribution, and dosimetry of radionuclide-labeled PD-L1 antibody in an immunocompetent mouse model of breast cancer. Cancer Res 76:472–479CrossRefGoogle Scholar
  17. 17.
    England CG, Jiang D, Ehlerding EB, Rekoske BT, Ellison PA, Hernandez R, Barnhart TE, McNeel DG, Huang P, Cai W (2017) 89Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer. Eur J Nucl Med Mol Imaging 45:110–120CrossRefGoogle Scholar
  18. 18.
    Truillet C, Oh HLJ, Yeo SP, Lee CY, Huynh LT, Wei J, Parker MFL, Blakely C, Sevillano N, Wang YH, Shen YS, Olivas V, Jami KM, Moroz A, Jego B, Jaumain E, Fong L, Craik CS, Chang AJ, Bivona TG, Wang CI, Evans MJ (2017) Imaging PD-L1 expression with immunoPET. Bioconjug Chem 29:96–103CrossRefGoogle Scholar
  19. 19.
    Natarajan A, Mayer AT, Xu L, Reeves RE, Gano J, Gambhir SS (2015) A novel radiotracer for immunoPET imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes. Bioconjug Chem 26:2062–2069CrossRefGoogle Scholar
  20. 20.
    Li D, Cheng S, Zou S, Zhu D, Zhu T, Wang P, Zhu X (2018) Immuno-PET imaging of 89Zr labeled anti-PD-L1 domain antibody. Mol Pharm 15:1674–1681CrossRefGoogle Scholar
  21. 21.
    Lesniak WG, Chatterjee S, Gabrielson M, Lisok A, Wharram B, Pomper MG, Nimmagadda S (2016) PD-L1 detection in tumors using [64Cu]atezolizumab with PET. Bioconjug Chem 27:2103–2110CrossRefGoogle Scholar
  22. 22.
    Broos K, Keyaerts M, Lecocq Q, Renmans D, Nguyen T, Escors D, Liston A, Raes G, Breckpot K, Devoogdt N (2017) Author information non-invasive assessment of murine PD-L1 levels in syngeneic tumor models by nuclear imaging with nanobody tracers. Oncotarget 8:41932–41946CrossRefGoogle Scholar
  23. 23.
    Le DT, Uram JN, Wang H (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520CrossRefGoogle Scholar
  24. 24.
    Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H, Honjo T (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8:765–772CrossRefGoogle Scholar
  25. 25.
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.School of Medical ImagingXuzhou Medical UniversityXuzhouChina
  2. 2.Department of Nuclear Medicine, Changhai HospitalThe Second Military Medical UniversityShanghaiChina
  3. 3.Department of Nuclear Medicine, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
  4. 4.Academy of Military Science of the Chinese People’s Liberation ArmyBeijingChina

Personalised recommendations