Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 1, pp 677–684 | Cite as

Ultra-sensitive radioanalytical technologies for underground physics experiments

  • P. P. PovinecEmail author
  • L. Benedik
  • R. Breier
  • M. Ješkovský
  • J. Kaizer
  • J. Kameník
  • O. Kochetov
  • J. Kučera
  • P. Loaiza
  • S. Nisi
  • V. Palušová
  • F. Piquemal
Article

Abstract

Assessment of radioactive contamination of construction materials used in deep underground experiments has been carried out using ultra-sensitive analytical methods such as radiometrics, inductively coupled plasma mass spectrometry (ICPMS), accelerator mass spectrometry (AMS), and neutron activation analysis. The lowest detection limits, < 1 nBq g−1, has been obtained with ICPMS and AMS techniques.

Keywords

Underground experiments Radiopurity measurements 238U and 232Th decay series AMS ICPMS HPGe gamma-spectrometry 

Notes

Acknowledgements

This study was carried out in the framework of the EU Research and Development Operational Program funded by the ERDF (Projects 26240120012, 26240120026 and 26240220004), with partial support from the Slovak Research and Development Agency (Project APVV-15-0576), and from the Slovak Scientific Granting Agency (Project VEGA 1/0891/17).

References

  1. 1.
    Arnold R et al (2010) Probing new physics models of neutrinoless double beta decay with SuperNEMO. Eur Phys J C 70:927–943CrossRefGoogle Scholar
  2. 2.
    Agostini M et al (2016) Search of neutrinoless double beta decay with the GERDA experiment. Nucl Part Phys Proc 273–275:1876–1882CrossRefGoogle Scholar
  3. 3.
    Abgrall N et al (2015) The Majorana Demonstrator neutrinoless double-beta decay experiment-Majorana Collaboration. Adv High Energy Phys 2014:365432Google Scholar
  4. 4.
    Abgrall N et al (2017) The large enriched germanium experiment for neutrinoless double beta decay. AIP Conf Proc 1894:020027CrossRefGoogle Scholar
  5. 5.
    Alimonti G et al (2009) The Borexino detector at the Laboratori Nazionali del Gran Sasso. Nucl Instrum Methods Phys Res A 600:568–593CrossRefGoogle Scholar
  6. 6.
    Angloher G et al (2017) CRESST collaboration. Eur Phys J C 77:637–645CrossRefGoogle Scholar
  7. 7.
    Angloher G et al (2014) EURECA conceptual design report. Phys Dark Univ 3:41–74CrossRefGoogle Scholar
  8. 8.
    Arnold R et al (2015) Results of the search for neutrinoless double beta-decay in 100Mo with the NEMO-3 experiment. Phys Rev D 92:072011CrossRefGoogle Scholar
  9. 9.
    Povinec PP (2017) Background constraints of the SuperNEMO experiment for neutrinoless double beta-decay searches. Nucl Instrum Methods Phys Res A 845:398–403CrossRefGoogle Scholar
  10. 10.
    Povinec PP et al (2008) New isotope technologies in environmental physics. Acta Phys Slov 58:1–154CrossRefGoogle Scholar
  11. 11.
    Povinec PP (2012) New gamma-spectrometry technologies for environmental sciences. J Anal Sci Technol 3:42–71CrossRefGoogle Scholar
  12. 12.
    Povinec PP (2018) New ultra-sensitive radioanalytical technologies for new science. J Radioanal Nucl Chem.  https://doi.org/10.1007/s10967-018-5787-3 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Laubenstein M et al (2004) Underground measurements of radioactivity. Appl Radiat Isotopes 61:167–172CrossRefGoogle Scholar
  14. 14.
    Loaiza P et al (2015) Obelix, a new low-background HPGe at Modane Underground Laboratory. AIP Conf Proc 1672(1):130002-1Google Scholar
  15. 15.
    Brudanin VB et al (2017) The low-background HPGe gamma-spectrometer OBELIX for the investigation of the double beta decay to excited states. IOSR-JAP 9:22–29CrossRefGoogle Scholar
  16. 16.
    Laubenstein M (2017) Screening of materials with high purity germanium detectors at the Laboratori Nazionali del Gran Sasso. Int J Mod Phys A 32:1743002CrossRefGoogle Scholar
  17. 17.
    Breier R, Laubenstein M, Povinec PP (2017) Monte Carlo simulation of background characteristics of a HPGe detector operating underground in the Gran Sasso National Laboratory. Appl Radiat Isotopes 126:188–190CrossRefGoogle Scholar
  18. 18.
    Breier R, Brudanin VB, Loaiza P, Piquemal F, Povinec PP, Rukhadze E, RukhadzeV Štekl I (2018) Environmental radionuclides as contaminants of HPGe gamma-ray spectrometers: Monte Carlo simulations for Modane underground laboratory. J Environ Radioact 190–191:134–140CrossRefPubMedGoogle Scholar
  19. 19.
    Povinec PP (2018) Analysis of radionuclides at ultra-low levels: a comparison of low and high-energy mass spectrometry with gamma-spectrometry for radiopurity measurements. Appl Radiat Isotopes 126:26–30CrossRefGoogle Scholar
  20. 20.
    Budjáš D et al (2009) Gamma-ray spectrometry of ultra-low levels of radioactivity within the material screening program for the GERDA experiment. Appl Radiat Isotopes 67:755–758CrossRefGoogle Scholar
  21. 21.
    Abgrall N et al (2016) The Majorana demonstrator radioassay program. Nucl Instrum Methods Phys Res A 828:22–36CrossRefGoogle Scholar
  22. 22.
    Palušová V, Breier R, Piquemal F, Povinec PP (2018) Monte Carlo simulation of environmental background sources of a HPGe detector operating in Modane underground laboratory. J Radioanal Nucl Chem (in print)Google Scholar
  23. 23.
    Loaiza P et al (2017) The BiPo-3 detector. Appl Radiat Isotopes 123:54–59CrossRefGoogle Scholar
  24. 24.
    Barabash A et al (2017) The BiPo-3 detector for the measurement of ultra-low natural radioactivities of thin materials. JINST 12:P06002CrossRefGoogle Scholar
  25. 25.
    Agyriades J et al (2010) Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils. Nucl Instrum Methods Phys Res A 622:120–128CrossRefGoogle Scholar
  26. 26.
    Roos P (2008) Analysis of radionuclides using ICPMS. In: Povinec PP (ed) Analysis of environmental radionuclides. Elsevier, Amsterdam, pp 295–330CrossRefGoogle Scholar
  27. 27.
    Nisi S et al (2009) Comparison of inductively coupled mass spectrometry and ultra-low-level gamma-ray spectroscopy for ultra-low background material selection. Appl Radiat Isotopes 67:828–832CrossRefGoogle Scholar
  28. 28.
    LaFerriere BD et al (2015) A novel assay method for the trace determination of Th and U in copper and lead using inductively coupled plasma mass spectrometry. Nucl Instrum Methods Phys A 775:93–98CrossRefGoogle Scholar
  29. 29.
    Jull AJT et al (2008) Accelerator mass spectrometry of long-lived light radionuclides. In: Povinec PP (ed) Analysis of environmental radionuclides. Elsevier, Amsterdam, pp 240–262Google Scholar
  30. 30.
    Fifield LK (2008) Accelerator mass spectrometry of long-lived heavy radionuclides. In: Povinec PP (ed) Analysis of environmental radionuclides. Elsevier, Amsterdam, pp 263–295CrossRefGoogle Scholar
  31. 31.
    Famulok N et al (2015) Ultrasensitive detection method for primordial nuclides in copper with accelerator mass spectrometry. Nucl Instrum Methods Phys B 361:193–196CrossRefGoogle Scholar
  32. 32.
    Povinec PP et al (2015) A new IBA-AMS laboratory at the Comenius University in Bratislava (Slovakia). Nucl Instr Methods Phys Res B 342:321–326CrossRefGoogle Scholar
  33. 33.
    Povinec PP et al (2015) Development of the Accelerator Mass Spectrometry technology at the Comenius University in Bratislava. Nucl Instr Methods Phys Res B 361:87–94CrossRefGoogle Scholar
  34. 34.
    Povinec PP et al (2015) Joint Bratislava–Prague studies of radiocarbon and uranium in the environment using accelerator mass spectrometry and radiometric methods. J Radioanal Nucl Chem 304:67–73CrossRefGoogle Scholar
  35. 35.
    Benedik L, Byrne AR (1995) Simultaneous determination of trace uranium and thorium by radiochemical neutron activation analysis. J Radioanal Nucl Chem 189:325–331CrossRefGoogle Scholar
  36. 36.
    Byrne AR, Benedik L (1999) Applications of neutron activation analysis in determination of natural and man-made radionuclides, including 231Pa. Czechoslov J Phys 49S1:263–270CrossRefGoogle Scholar
  37. 37.
    Hou X (2008) Activation analysis for the determination of long-lived radionuclides. In: Povinec PP (ed) Analysis of environmental radionuclides. Elsevier, Amsterdam, pp 370–406Google Scholar
  38. 38.
    Kučera J, Kameník J, Povinec PP (2017) Radiochemical separation of mostly short-lived neutron activation products. J Radioanal Nucl Chem 311:1299–1307CrossRefGoogle Scholar
  39. 39.
    Lee SH et al (2008) Ultra-low-level determination of 236U in IAEA marine reference materials by ICPMS and AMS. Appl Radiat Isotopes 66:823–828CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • P. P. Povinec
    • 1
    Email author
  • L. Benedik
    • 2
  • R. Breier
    • 1
  • M. Ješkovský
    • 1
  • J. Kaizer
    • 1
  • J. Kameník
    • 3
  • O. Kochetov
    • 4
  • J. Kučera
    • 3
  • P. Loaiza
    • 5
  • S. Nisi
    • 6
  • V. Palušová
    • 1
  • F. Piquemal
    • 7
    • 8
  1. 1.Centre for Nuclear and Accelerator Technologies (CENTA), Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovakia
  2. 2.Josef Stefan InstituteLjubljanaSlovenia
  3. 3.Nuclear Physics Institute CASHusinec-ŘežCzech Republic
  4. 4.Joint Institute for Nuclear ResearchDubnaRussia
  5. 5.LAL, Université Paris-Sud, CNRS/IN2P3Université Paris-SaclayOrsayFrance
  6. 6.Laboratori Nazionali del Gran SassoINFNAssergiItaly
  7. 7.Laboratoire Souterrain de ModaneModaneFrance
  8. 8.CNRS/IN2P3, CENBGUniversité de BordeauxGradignanFrance

Personalised recommendations