Advertisement

Production and standardization of an on-demand protactinium-233 tracer

  • Zoya Naperstkow
  • Kimberly Moore
  • Daniel Szames
  • Cassis Varlow
  • Andrea F. Armstrong
  • Raphael Galea
Article
  • 22 Downloads

Abstract

Protactinium-233 (233Pa) was generated by neutron activation of thorium and isolated by column chromatography using an octanol-impregnated resin. Absolute activity standardization was performed on 233Pa using three independent methods, the results of which agreed within their associated uncertainties. The standardized 233Pa was used to calibrate a secondary standard ionization chamber and high purity germanium detectors to enable a rapid and traceable method for the production and quantification of this radiotracer.

Keywords

Protactinium Nuclear forensics Radiochronometry Standardization Radionuclide metrology 

Notes

Acknowledgements

Funding for this research was provided by the Canadian Safety and Security Program, Project No. CSSP-2016-TI-2223.

References

  1. 1.
    Stanley EE (2012) A beginner’s guide to uranium chronometry in nuclear forensics and safeguards. J Anal At Spectrom 27:1821–1830CrossRefGoogle Scholar
  2. 2.
    Mayer K, Wallenius M, Varga Z (2013) Nuclear forensic science: correlating measurable material parameters to the history of nuclear material. Chem Rev 113:884–900CrossRefGoogle Scholar
  3. 3.
    Keegan E, Kristo MJ, Toole K, Kips R, Young E (2016) Nuclear forensics: scientific analysis supporting law enforcement and nuclear security investigations. Anal Chem 88:1496–1505CrossRefGoogle Scholar
  4. 4.
    Bé MM, Chisté V, Dulieu C, Mougeot X, Browne E, Chechev V, Kuzmenko N, Kondev F, Luca A, Galan M, Nichols AL, Arinc A, Huang X (2010) Table of radionuclides vol. 5. Monographie BIPM-5. Bureau International des Poids et Mesures, SèvresGoogle Scholar
  5. 5.
    Eppich GR, Williams RW, Gaffney AM, Schorzman KC (2013) 235U–231Pa age dating of uranium materials for nuclear forensic investigations. J Anal At Spectrom 28:666–674CrossRefGoogle Scholar
  6. 6.
    Rolison JM, Treinen KC, McHugh KC, Gaffney AM (2017) Application of the 226Ra–230Th–234U and 227Ac–231Pa–235U radiochronometers to uranium certified reference materials. J Radioanal Nucl Chem 314:2459–2467CrossRefGoogle Scholar
  7. 7.
    Fudge AJ, Woodhead JL (1956) The isolation and determination of protactinium-233. Analyst 81:417–426CrossRefGoogle Scholar
  8. 8.
    Knight AW, Nelson AW, Eitrheim ES, Forbes TZ, Schultz MK (2016) A chromatographic separation of neptunium and protactinium using 1-octanol impregnated onto a solid phase support. J Radioanal Nucl Chem 307:59–67CrossRefGoogle Scholar
  9. 9.
    van der Meulen NP, Steyn GF, van der Walt TN, Shishkin SV, Vermeulen C, Tretyakova SP, Guglielmetti A, Bonetti R, Ogloblin AA, McGee D (2006) The separation of Pa from a Th target by means of ion exchange chromatography. Czechoslov J Phys 56:D357–D362CrossRefGoogle Scholar
  10. 10.
    Radchenko V, Engle JW, Wilson JJ, Maassen JR, Nortier MF, Birnbaum ER, John KD, Fassbender ME (2016) Formation cross-sections and chromatographic separation of protactinium isotopes formed in proton-irradiated thorium metal. Radiochim Acta 104:291–304Google Scholar
  11. 11.
    Jerome SM, Collins SM, Happel S, Ivanov P, Russell BC (2018) Isolation and purification of protactinium-231. Appl Radiat Isot 134:18–22CrossRefGoogle Scholar
  12. 12.
    Baerg AP, Munzenmayer K, Bowes GC (1976) Live-timed anti-coincidence counting with extending dead-time circuitry. Metrologia 12:77–80CrossRefGoogle Scholar
  13. 13.
    Broda R, Cassette P, Kossert K (2005) Radionuclide metrology using liquid scintillation counting. Metrologia 44:36–52CrossRefGoogle Scholar
  14. 14.
    Grau Malonda A, Garcia-Toraño E (1982) Evaluation of counting efficiency in liquid scintillation counting of pure β -ray emitters. Int J Appl Radiat Isot 33:249–253CrossRefGoogle Scholar
  15. 15.
    Kossert K, Grau Carles A (2010) Improved method for the calculation of the counting efficiency of electron-capture nuclides in liquid scintillation samples. Int J Appl Radiat Isot 68:1482–1488CrossRefGoogle Scholar
  16. 16.
    Hussein GAM, Ismail HM (1995) Texture assessment of thoria as a final decomposition product of hydrated thorium nitrate and oxycarbonate. Colloids Surf A Physicochem Eng Asp 99:129–139CrossRefGoogle Scholar
  17. 17.
    Dash S, Kamruddin M, Ajikumar PK, Tyagi AK, Raj B, Bera S, Narasimhan SV (2000) Temperature programmed decomposition of thorium nitrate pentahydrate. J Nucl Mat 278:173–185CrossRefGoogle Scholar
  18. 18.
    Kumari N, Pathak PN, Prabhu DR, Manchanda VK (2012) Solvent extraction studies of protactinium for its recovery from short-cooled spent fuel and high-level waste solutions in thorium fuel cycle using diisobutyl carbinol (DIBC) as extractant. Desalin Water Treat 38:46–51CrossRefGoogle Scholar
  19. 19.
    Kuroda R, Ishida K (1965) Cation-exchange separation of protactinium-233 from irradiated thorium. J Chromatogr 18:438–440CrossRefGoogle Scholar
  20. 20.
    Fitzgerald R, Pibida L (2018) Primary standardization of the massic activity of a protactinium-233 solution. J Radioanal Nucl Chem. (SI: MARC XI. LOG 585) Google Scholar
  21. 21.
    Galea R, Gameil K (2016) Renewing the radiopharmaceutical accuracy check service for Canadian radionuclide calibrators. App Radiat Isot 109:254–256CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Nuclear Operations and FacilitiesMcMaster UniversityHamiltonCanada
  2. 2.National Research Council of CanadaOttawaCanada

Personalised recommendations