Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 1, pp 673–676 | Cite as

Assessment of tree bark as a biomonitor of anthropogenic thorium and radium contamination

  • Elisabeth Widom
  • David Kuentz
Article

Abstract

This pilot study investigated tree bark as a potential biomonitor of thorium and radium contamination in the environment, using the former Fernald Feed Materials Production Center (FFMPC) in southwest Ohio as a test case. Tree bark samples collected in the vicinity of the FFMPC have radium and thorium concentrations ~ 8X and ~ 10X background levels, respectively, and exhibit elevated 230Th/232Th relative to background. These results suggest that the tree bark hosts contaminant Th and Ra from the FFMPC, and that these signatures can be used as tracers of anthropogenic actinide contamination in the environment.

Keywords

Thorium Radium Isotopes Tree bark Environmental contamination Biomonitor 

Notes

Acknowledgements

This study was supported by the Janet and Elliot Baines Professorship awarded to E. Widom.

Supplementary material

10967_2018_6066_MOESM1_ESM.docx (55 kb)
Supplementary material 1 (DOCX 54 kb)

References

  1. 1.
    Walkenhorst AJ, Hagemeyer J, Breckle W (1993) In: Markert B (ed) Plants as biomonitors: indicators for heavy metals in the terrestrial environment. VCH, Weinheim, pp 524–540Google Scholar
  2. 2.
    Ma R, Bellis D, McLeod CW (2000) Anal Chem 72:4878–4881CrossRefPubMedGoogle Scholar
  3. 3.
    Bellis D, Ma R, Bramall N, McLeod CW, Chapman N, Satake K (2001) Environ Pollut 114:383–387CrossRefPubMedGoogle Scholar
  4. 4.
    Bellis D, Ma R, Bramall N, McLeod CW (2001) Sci Total Environ 264:283–286CrossRefPubMedGoogle Scholar
  5. 5.
    Bellis DJ, Ma R, McLeod CW (2001) J Environ Monit 3:198–201CrossRefPubMedGoogle Scholar
  6. 6.
    Edmands JD, Brabander DJ, Coleman DS (2001) Chemosphere 44:789–795CrossRefPubMedGoogle Scholar
  7. 7.
    Conte E, Widom E, Kuentz D (2017) J Environ Radioact 178–179:265–278CrossRefPubMedGoogle Scholar
  8. 8.
    Fernald Environmental Management Project (1998) FEMP 20900-RP-0001 Rev. 0Google Scholar
  9. 9.
    Kilough GG, Case MJ, Meyer KR, Moore RE, Rope SK, Schmidt DW, Shleien B, Sinclair, WK, Voilleque PG, Till JE (1998) RAC Report No. 1-CDC-Fernald-1998-Final (Vol. 1)Google Scholar
  10. 10.
    Alliance for Nuclear Accountability (2003) Chapter 3 Fernald Site, www.ananuclear.org
  11. 11.
    Makhijani A (2000) Institute for Energy and Environmental Research, SDA 5-3Google Scholar
  12. 12.
    ORAU Team Dose Reconstruction Project for NIOSH (2006) ORAUT-TKBS-0017-4Google Scholar
  13. 13.
    Fioravanti M, Makhijani A (1997) Institute for Energy and Environmental ResearchGoogle Scholar
  14. 14.
    McHugh KC, Widom E, Spitz HB, Wiles GC, Glover SE (2017) J Environ Radioact 182:183–189CrossRefPubMedGoogle Scholar
  15. 15.
    Duval JS (1987) USGS Geophysical Investigation Map 966Google Scholar
  16. 16.
    Clarke LB, Sloss LL (1992) IEA Coal Research (IEACR/49), LondonGoogle Scholar
  17. 17.
    Swanson VE, Medlin, JH, Hatch, JR, Coleman, SL, Wood, GH, Woodruff, SD, Hildebrand, RT (1975) USGS Open-File Report 76-468Google Scholar
  18. 18.
    Lauer NE, Hower JC, Hsu-Kim H, Taggart RK, Vengosh A (2015) Environ Sci Technol.  https://doi.org/10.1021/acs.est.5b01978 CrossRefPubMedGoogle Scholar
  19. 19.
    Conte E, Widom E, Kuentz D (2016) J Radioanal Nucl Chem 307:1675–1679CrossRefGoogle Scholar
  20. 20.
    Hancock GJ, Murray AS, Brunskill GJ, Argent RM (2006) Global Biogeochem Cycles 20:GB4007.  https://doi.org/10.1029/2005gb002641 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Geology and Environmental Earth ScienceMiami UniversityOxfordUSA

Personalised recommendations