Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 1, pp 375–380 | Cite as

Retrospective neutron spectrum determination of a (30 MeV D, Be) source using the multi-foil activation technique and STAYSL-PNNL

  • John J. Goodell
  • Christine M. Egnatuk
  • Stephen W. Padgett
  • Bryan B. Bandong
  • Kevin E. Roberts
  • Alice C. Mignerey
Article

Abstract

Retrospective characterization of a (30 MeV D, Be) neutron source was performed employing multi-foil activation and STAYSL-PNNL. Experimental reaction rates were calculated from gamma spectroscopy measurements of irradiated foils and MCNP provided the guess spectrum. Adjusted spectra were evaluated through activation calculations for a stainless-steel target using FISPACT-II. Adjusted spectra showed limited dependence on the dosimetry reactions and provided minor improvements in activation calculations. Omitting reflected neutrons in the guess spectrum generated poor activation results and the limited number of dosimetry reactions introduced doubt in the adjusted spectra. A dedicated neutron spectrometry experiment and a more detailed simulation is required.

Keywords

STAYSL-PNNL Neutron spectral adjustment Foil activation d+Be neutron source MCNP FISPACT-II 

Notes

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

References

  1. 1.
    Nethaway DR, Van Konynenburg RA, Adams TM (1976) Measurement of the neutron spectrum on a thick beryllium target from the reaction of 30-MeV deuterons. Natl Tech Inf Serv, UCID52024Google Scholar
  2. 2.
    Wei Z, Yan Y, Yao ZE et al (2013) Evaluation of the neutron energy spectrum, angular distribution, and yield of the 9Be(d, n) reaction with a thick beryllium target. Phys Rev C.  https://doi.org/10.1103/physrevc.87.054605 CrossRefGoogle Scholar
  3. 3.
    Stefanik M, Bem P, Majerle M et al (2017) Neutron spectrum determination of d(20)+Be source reaction by the dosimetry foils method. Radiat Phys Chem.  https://doi.org/10.1016/j.radphyschem.2017.03.029 CrossRefGoogle Scholar
  4. 4.
    Brooks FD, Klein H (2002) Neutron spectrometry-historical review and present status. Nucl Instrum Methods Phys Res A 476:1–11CrossRefGoogle Scholar
  5. 5.
    Vagena E, Theodorou K, Stoulos S (2018) Thick-foils activation technique for neutron spectrum unfolding with the MINUIT routine—comparison with GEANT4 simulations. Nucl Instrum Methods Phys Res A.  https://doi.org/10.1016/j.nima.2018.01.025 CrossRefGoogle Scholar
  6. 6.
    Maeda S, Tomita H, Kawarabayashi J, Iguchi T (2011) Fundamental study on neutron spectrum unfolding using maximum entropy and maximum likelihood method. Prog Nucl Sci Technol 1:233–236CrossRefGoogle Scholar
  7. 7.
    Hayes JW, Finn E, Greenwood L, Wittman R (2014) Characterization of a Thermo Scientific D711 D-T neutron generator located in a low-scatter facility. Nucl Instrum Methods Phys Res A.  https://doi.org/10.1016/j.nima.2013.11.023 CrossRefGoogle Scholar
  8. 8.
    Shahabinejad H, Hosseini SA, Sohrabpour M (2016) A new neutron energy spectrum unfolding code using a two steps genetic algorithm. Nucl Instrum Methods Phys Res A.  https://doi.org/10.1016/j.nima.2015.12.028 CrossRefGoogle Scholar
  9. 9.
    Greenwood LR, Johnson CD (2013) User guide for the STAYSL PNNL suite of software tools. PNNL-22253, Pacific Northwest National Laboratory, Richland, WashingtonGoogle Scholar
  10. 10.
    Goorley T, James M, Booth T et al (2012) Initial MCNP6 release overview. Nucl Technol.  https://doi.org/10.13182/nt11-135 CrossRefGoogle Scholar
  11. 11.
    Sublet J-CC, Eastwood JW, Morgan JG, et al (2015) FISPACT-II user manual. Technical report UKAEA-R(11)11 Issue 7. http://fispact.ukaea.uk/. Accessed 23 Jan 2018
  12. 12.
    Shieldwerx SWX-500 Series Activation Foils Specification Sheet. http://www.shieldwerx.com/assets/swx-5xx.pdf. Accessed 27 Mar 2017
  13. 13.
    Goodfellow (2014) Stainless steel—AISI 304-Foil. www.goodfellowusa.com. Accessed 7 Mar 2017
  14. 14.
    Zsolnay EM, Noy RC, Nolthenius HJ, Trkov A (2012) Summary description of the new International Reactor Dosimetry and Fusion File (IRDFF release 1.0). INDC(NDC)-0616. https://www-nds.iaea.org/publications/indc/indc-nds-0616-1.pdf. Accessed 24 Jan 2018
  15. 15.
    Gunnink R, Niday JB (1972) Computerized quantitative analysis by gamma-ray spectroscopy (Gamanal), vol 1–4, UCRL-51061Google Scholar
  16. 16.
    Muscovite mineral data. http://webmineral.com/data/Muscovite.shtml#.Wq4YKJdlAuU. Accessed 15 Jan 2018
  17. 17.
    MacFarlane RE, Muir DW (1994) The NJOY nuclear data processing system: version 91. LA-12740-M.  https://doi.org/10.2172/10115999
  18. 18.
    Nuclear Energy Agency (2014) JEFF-3.2 evaluated data library. http://www.oecd-nea.org/dbforms/data/eva/evatapes/jeff_32/. Accessed 10 Jan 2018
  19. 19.
    Greenwood LR, Simakov SP, Trkov A (2017) INDC International Nuclear Data Committee testing and improving the International Reactor Dosimetry and Fusion File (IRDFF). INDC(NDS)-0731. https://www-nds.iaea.org/publications/indc/indc-nds-0731.pdf. Accessed 5 Feb 2018

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • John J. Goodell
    • 1
  • Christine M. Egnatuk
    • 2
  • Stephen W. Padgett
    • 2
  • Bryan B. Bandong
    • 2
  • Kevin E. Roberts
    • 2
  • Alice C. Mignerey
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkUSA
  2. 2.Nuclear and Chemical Sciences DivisionLawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations