Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 317, Issue 3, pp 1329–1332 | Cite as

Reduction of the radioactivity in sodium iodide (NaI) powder by recrystallization method

  • KeonAh Shin
  • Olga Gileva
  • Yeongduk Kim
  • Hyun Su Lee
  • HyangKyu Park
Article
  • 52 Downloads

Abstract

The COSINE experiment is searching for dark matter using ultra-low background NaI scintillating crystals. In order to reduce the internal contamination of the initial NaI powder to grow NaI crystals, NaI powder samples with different purities were purified by fractional recrystallization using de-ionized water. The concentrations of the main radioactive elements, K, Pb, Th, and U, which are major backgrounds for the dark matter search, were reduced to the level required for the experiment. Further, the concentrations of other impurities, e.g., Ba, Ca, Cr, and Fe, were also reduced, which is important to realize good quality NaI crystals.

Keywords

Dark matter Fractional recrystallization Radioactive impurity Ultralow-background NaI crystal 

Notes

Acknowledgements

We thank J.S. Choi for ICP-MS measurements. This research was funded by the Institute for Basic Science (Korea) Under Project Code IBS-R016- A1. HyangKyu Park was supported by a Korea University Grant.

References

  1. 1.
    Zwicky F (1933) Die Rotverschiebung von extragalaktischen Nebeln. Helv Phys Acta.  https://doi.org/10.1007/s10714-008-0707-4 Google Scholar
  2. 2.
    Rubin VC, Thonnard N, Ford WK (1980) Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R = 4 kpc) to UGC 2885 (R = 122 kpc). Astrophys J 238:471–487CrossRefGoogle Scholar
  3. 3.
    Blumenthal GR, Faber SM, Primack JR, Reses MJ (1984) Formation of galaxies and large-scale structure with cold dark matter. Nature 311:517–525CrossRefGoogle Scholar
  4. 4.
    Begeman KG, Broeils AH, Sanders RH (1991) Extended rotation curves of spiral galaxies: dark haloes and modified dynamics. Mon Not Roy Astron Soc 249:523–536CrossRefGoogle Scholar
  5. 5.
    Bertone G, Hooper D, Silk J (2005) Particle dark matter: evidence, candidates and constraints. Phys Rep 405:279–390CrossRefGoogle Scholar
  6. 6.
    Jungman G, Kamionkowski M, Griest K (1996) Supersymmetric dark matter. Phys Rep 267:195–373CrossRefGoogle Scholar
  7. 7.
    Gaitskell R (2004) Direct detection of dark matter. Ann Rev Nucl Part Sci 54:315–359CrossRefGoogle Scholar
  8. 8.
    Baudis L (2012) Direct dark matter detection: the next decade. Phys Dark Univ 1:94–108CrossRefGoogle Scholar
  9. 9.
    Bernabei R et al (1998) Searching for WIMPs by the annual modulation signature. Phys Lett B 424:195–201CrossRefGoogle Scholar
  10. 10.
    Bernabei R et al (2008) First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur Phys J C 56:333–355CrossRefGoogle Scholar
  11. 11.
    Bernabei R et al (2010) New results from DAMA/LIBRA. Eur Phys J C 67:39–49CrossRefGoogle Scholar
  12. 12.
    Amare J et al (2014) Preliminary results of ANAIS-25. Nucl Instrum Methods Phys Res A 742:187–190CrossRefGoogle Scholar
  13. 13.
    Cherwinka J et al (2014) First data from DM-Ice17. Phys Rev D.  https://doi.org/10.1103/PhysRevD.90.092005 Google Scholar
  14. 14.
    Kim KW et al (2015) Test on NaI(Tl) crystals for WIMP search at the Yangyang Underground Laboratory. Astropart Phys 62:249–257CrossRefGoogle Scholar
  15. 15.
    Fushimi KI et al (2016) High purity NaI (Tl) scintillator to search for dark matter. JPS Conf Proc.  https://doi.org/10.7566/JPSCP.11.020003 Google Scholar
  16. 16.
    Xu J et al (2015) Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold. Phys Rev C.  https://doi.org/10.1103/PhysRevC.92.015807 Google Scholar
  17. 17.
    Adhikari G et al (2017) Initial performance of the COSINE-100 experiment. Eur Phys J C.  https://doi.org/10.1140/epjc/s10052-018-5590-x Google Scholar
  18. 18.
    Adhikari P et al (2016) Understanding internal backgrounds in NaI(T1) crystals toward a 200 Kg array for the KIMS-NaI experiment. Eur Phys J C.  https://doi.org/10.1140/epjc/s10052-016-4030-z Google Scholar
  19. 19.
    Bernabei R et al (2008) The DAMA/LIBRA apparatus. Nucl Instrum Methods Phys Res A 592(3):297–315CrossRefGoogle Scholar
  20. 20.
    Johnson JR (1965) The direct synthesis and purification of sodium iodide. Retrospective Theses and Dissertations 3359, Iowa State University of Science and Technology Ames, Iowa http://lib.dr.iastate.edu/rtd/3359
  21. 21.
    Johnson IE (1961) Method of purifying alkali metal iodides. U.S. Patent No.3002811 A. Patented Oct. 3, 1961. https://patentimages.storage.googleapis.com/f0/82/80/8c57e0586a846c/US3002811.pdf
  22. 22.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Center for Underground PhysicsInstitute for Basic ScienceDaejeonKorea
  2. 2.Department of Accelerator Science, Graduate SchoolKorea UniversitySejongKorea

Personalised recommendations