Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 317, Issue 3, pp 1333–1339 | Cite as

68Ga-radiolabeled magnetic nanoparticles for PET–MRI imaging

  • Elham Sattarzadeh
  • Mostafa M. Amini
  • Saeed Kakaei
  • Alireza Khanchi
Article

Abstract

In this study, magnetic multimodal nanoparticles with potential applications in magnetic- and nuclear-medicine imaging, magnetic resonance imaging, hyperthermia, and theranostic (therapeutic and diagnostic), applications were prepared by coating iron oxide nanoparticles with silica (core–shell), functionalizing with aminopropyltriethoxy silane and coupling with diethylenetriamine pentaacetic acid ligand (DTPA). Radiolabeling of core–shell–DTPA particles with 68Ga radiometal was carried out through chelation of 68Ga(III) ions by DTPA and was used for positron emission tomography. The biodistribution of the 68Ga-radiolabeled magnetic nanoparticles compared to free 68Ga(III) was checked in normal Balb/c mice up to 2 h.

Keywords

Magnetic nanoparticles Core–shell–DTPA Radiometal PET–MRI imaging 68Ga Bio-distribution 

Notes

Acknowledgements

The financial support of Nuclear Science and Technology Research Institute (Grant Number Prog-C7-94-001) and Shahid Beheshti University is gratefully acknowledged.

References

  1. 1.
    Welch MJ, Hawker CJ, Wooley KL (2009) The advantages of nanoparticles for PET. J Nucl Med 50:1743–1746CrossRefPubMedGoogle Scholar
  2. 2.
    Loudos G, Kagadis GC, Psimadas D (2011) Current status and future perspectives of in vivo small animal imaging using radiolabeled nanoparticles. Eur J Radiol 78:287–295CrossRefPubMedGoogle Scholar
  3. 3.
    Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22:1879–1903CrossRefPubMedGoogle Scholar
  4. 4.
    Yan X, Jinhua Z (2014) Recent development of radiolabeled nanoparticles for PET imaging. Austin J Nanomed Nanotechnol 2:10–19Google Scholar
  5. 5.
    Torres R, Tavare R (2011) Synthesis of 64CuII–bis(dithiocarbamatebisphosphonate) and its conjugation with superparamagnetic iron oxide nanoparticles. In vivo evaluation as dual-modality PET–MRI agent. Angew Chem Int Ed 50:5509–5513CrossRefGoogle Scholar
  6. 6.
    Reddy S, Robinson MK (2010) Immuno-positron emission tomography in cancer models. Semin Nucl Med 40:182–189CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mahmoudi M, Sahraian M, Shokegozar M (2011) Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of multiple sclerosis. Chem Neurosci 2:118–140CrossRefGoogle Scholar
  8. 8.
    Gupta A, Gupta M (2005) Synthesis and surface engineering of ironoxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRefPubMedGoogle Scholar
  9. 9.
    Tong L, Zhao M, Zhu S (2011) Synthesis and application of superparamagnetic iron oxide nanoparticles in targeted therapy and imaging of cancer. Front Med 5:379–387CrossRefPubMedGoogle Scholar
  10. 10.
    Hong R, Li J, Chen J (2009) Preparation and characterization of magnetite/dextran nanocomposite used as a precursor of magnetic fluid. Chem Eng J 150:572–580CrossRefGoogle Scholar
  11. 11.
    Morfin J, Toth E (2011) Kinetics of Ga(NOTA) formation from weak Ga–citrate complexes. Inorg Chem 50:10371–10378CrossRefPubMedGoogle Scholar
  12. 12.
    Wadas TJ, Wong EH, Weisman G, Anderson C (2010) Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev 110:2858–2902CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gupta A, Naregalkar R, Vaidya V, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical application. Nanomedicine 2:23–39CrossRefPubMedGoogle Scholar
  14. 14.
    Mewis R, Archibald S (2010) Biomedical applications of macrocycic ligand complees. Coord Chem Rev 254:1686–1712CrossRefGoogle Scholar
  15. 15.
    Wong E, Caravan P, Liu S, Rettig S, Orvig C (1996) Selectivity of potentially hexadentate amine phenols for Ga3+ and In3+ in aqueous solution. Inorg Chem 35:715–724CrossRefGoogle Scholar
  16. 16.
    He Y, Wang Q, Li CR (2005) Synthesis and characterization of functionalized silica-coated Fe3O4 superparamagneticnanocrystals for biological applications. J Phys D Appl Phys 38:1342–1350CrossRefGoogle Scholar
  17. 17.
    Stöber W, Fink A, Bohn E (1986) Controlled groeth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  18. 18.
    Kim K, Kim S, Chao Y (2007) Formation and surface modification of Fe3O4 nanoparticles by co-precipitation and sol–gel method. J Ind Eng Chem 13:1137–1141Google Scholar
  19. 19.
    Chen S, Feng J, Gua X (2005) One-step wet chemistry for preparation of magnetic nanorods. Mater Lett 59:985–988CrossRefGoogle Scholar
  20. 20.
    Cao H, He J, Deng L (2009) Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4/amino-silane core–shell nanoparticles via layer-by-layer method. Appl Surf Sci 255:7974–7980CrossRefGoogle Scholar
  21. 21.
    Mirzaei M, Jalilian AR, Aghanejad A (2015) Preparation and evaluation of 68Ga–ECC as a pet renal imaging agent. Nucl Med Mol Imaging 49:208–216CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Johansson R, Falch D (1978) 113mIn–DTPA, a useful compound for the determination of glomerular filtration rate (GFR). Eur J Nucl Med 3:179–181CrossRefPubMedGoogle Scholar
  23. 23.
    Klooper F, Houser W, Atkins L (1971) Evaluation of 99mTc–DTPA for the measurement of glomerular filtration rate. J Nucl Med 13:107–114Google Scholar
  24. 24.
    Xing Y, Zhao J, Conti PS, Chen K (2010) Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics 4:290–306CrossRefGoogle Scholar
  25. 25.
    Ma H, Qi X (2007) Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate. Int J Pharm 333:177–186CrossRefPubMedGoogle Scholar
  26. 26.
    Ahangaran F, Hassanzadeh A, Nouri S (2013) Surface modification of Fe3O4@SiO2 microsphere by silane coupling agent. Int Nano Lett 3:23–27CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of ChemistryShahid Beheshti University G.C.TehranIran
  2. 2.Material and Nuclear Fuel Research SchoolNuclear Science and Technology Research InstituteTehranIran

Personalised recommendations