Advertisement

Recent developments in targeted imaging of CXCR4-chemokine receptor

  • Ashraf Fakhari
  • Ayuob AghanejadEmail author
  • Amir Reza Jalilian
  • Esmaeil Gharepapagh
Article
  • 174 Downloads

Abstract

Chemokine receptor 4 (CXCR4) have been over-expressed by multiple types of primary and metastatic cancer cells and organs. Accordingly, various types of small molecules, as well as, bio-molecules were employed for CXCR4 targeting for selective and efficient diagnosis and treatment of malignancies and diseases. Moreover, recent progresses in imaging modalities like SPECT, PET, and optical detection instruments have provided a promising perspective for the emergence of a potential detection and treatment by CXCR4 in desired tissues and organs. In this review, the reported CXCR4 targeted imaging agents are described based on their specificity, affinity and biodistribution.

Keywords

Chemokine receptor CXCR4 Targeted imaging PET/SPECT imaging 

Notes

Acknowledgements

This work was supported by Tabriz University of Medical Sciences (Tabriz, Iran).

References

  1. 1.
    Ma YU, Zhang LI, Li Q (2016) Expression levels of cytokines and chemokines increase in human peripheral blood mononuclear cells stimulated by activation of the Toll-like receptor 5 pathway. Exp Ther Med 11(2):588–592.  https://doi.org/10.3892/etm.2015.2914 CrossRefPubMedGoogle Scholar
  2. 2.
    Razmkhah M, Arabpour F, Taghipour M, Mehrafshan A, Chenari N, Ghaderi A (2014) Expression of chemokines and chemokine receptors in brain tumor tissue derived cells. Asian Pac J Cancer Prev 15(17):7201–7205CrossRefPubMedGoogle Scholar
  3. 3.
    Bacon K, Baggiolini M, Broxmeyer H, Horuk R, Lindley I, Mantovani A, Maysushima K, Murphy P, Nomiyama H, Oppenheim J, Rot A, Schall T, Tsang M, Thorpe R, Van Damme J, Wadhwa M, Yoshie O, Zlotnik A, Zoon K (2002) Chemokine/chemokine receptor nomenclature. J Interferon Cytokine Res 22(10):1067–1068.  https://doi.org/10.1089/107999002760624305 CrossRefPubMedGoogle Scholar
  4. 4.
    Szekanecz Z, Koch AE (2016) Successes and failures of chemokine-pathway targeting in rheumatoid arthritis. Nat Rev Rheumatol 12(1):5–13.  https://doi.org/10.1038/nrrheum.2015.157 CrossRefPubMedGoogle Scholar
  5. 5.
    Sebastiani S, Allavena P, Albanesi C, Nasorri F, Bianchi G, Traidl C, Sozzani S, Girolomoni G, Cavani A (2001) Chemokine receptor expression and function in CD4 + T lymphocytes with regulatory activity. J Immunol 166(2):996–1002CrossRefPubMedGoogle Scholar
  6. 6.
    Dar A, Kollet O, Lapidot T (2006) Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol 34(8):967–975.  https://doi.org/10.1016/j.exphem.2006.04.002 CrossRefPubMedGoogle Scholar
  7. 7.
    Doring Y, Pawig L, Weber C, Noels H (2014) The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Front Physiol 5:212.  https://doi.org/10.3389/fphys.2014.00212 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Telli ML, Carlson RW (2009) First-line chemotherapy for metastatic breast cancer. Clin Breast Cancer 9:S66–S72CrossRefPubMedGoogle Scholar
  9. 9.
    Pachner AR, Li L, Gilli F (2015) Chemokine biomarkers in central nervous system tissue and cerebrospinal fluid in the Theiler’s virus model mirror those in multiple sclerosis. Cytokine 76(2):577–580.  https://doi.org/10.1016/j.cyto.2015.06.010 CrossRefPubMedGoogle Scholar
  10. 10.
    Mirabelli-Badenier M, Braunersreuther V, Viviani GL, Dallegri F, Quercioli A, Veneselli E, Mach F, Montecucco F (2011) CC and CXC chemokines are pivotal mediators of cerebral injury in ischaemic stroke. Thromb Haemost 105(3):409–420.  https://doi.org/10.1160/th10-10-0662 CrossRefPubMedGoogle Scholar
  11. 11.
    Ramesh G, MacLean AG, Philipp MT (2013) Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm 2013:480739.  https://doi.org/10.1155/2013/480739 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chow MT, Luster AD (2014) Chemokines in cancer. Cancer Immunol Res 2(12):1125–1131.  https://doi.org/10.1158/2326-6066.cir-14-0160 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nagarsheth N, Wicha MS, Zou W (2017) Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 17(9):559–572.  https://doi.org/10.1038/nri.2017.49 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Same S, Aghanejad A, Akbari Nakhjavani S, Barar J, Omidi Y (2016) Radiolabeled theranostics: magnetic and gold nanoparticles. Bioimpacts 6(3):169–181.  https://doi.org/10.15171/bi.2016.23 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chatterjee S, Behnam Azad B, Nimmagadda S (2014) The intricate role of CXCR4 in cancer. Adv Cancer Res 124:31–82.  https://doi.org/10.1016/b978-0-12-411638-2.00002-1 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sawant KV, Poluri KM, Dutta AK, Sepuru KM, Troshkina A, Garofalo RP, Rajarathnam K (2016) Chemokine CXCL1 mediated neutrophil recruitment: role of glycosaminoglycan interactions. Sci Rep 6:33123.  https://doi.org/10.1038/srep33123 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sawant KV, Xu R, Cox R, Hawkins H, Sbrana E, Kolli D, Garofalo RP, Rajarathnam K (2015) Chemokine CXCL1-mediated neutrophil trafficking in the lung: role of CXCR2 activation. J Innate Immun 7(6):647–658.  https://doi.org/10.1159/000430914 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Eash KJ, Greenbaum AM, Gopalan PK, Link DC (2010) CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Investig 120(7):2423–2431.  https://doi.org/10.1172/jci41649 CrossRefPubMedGoogle Scholar
  19. 19.
    Gangavarapu P, Rajagopalan L, Kolli D, Guerrero-Plata A, Garofalo RP, Rajarathnam K (2012) The monomer-dimer equilibrium and glycosaminoglycan interactions of chemokine CXCL8 regulate tissue-specific neutrophil recruitment. J Leukoc Biol 91(2):259–265.  https://doi.org/10.1189/jlb.0511239 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zaldivar MM, Pauels K, von Hundelshausen P, Berres ML, Schmitz P, Bornemann J, Kowalska MA, Gassler N, Streetz KL, Weiskirchen R, Trautwein C, Weber C, Wasmuth HE (2010) CXC chemokine ligand 4 (Cxcl4) is a platelet-derived mediator of experimental liver fibrosis. Hepatology 51(4):1345–1353.  https://doi.org/10.1002/hep.23435 CrossRefPubMedGoogle Scholar
  21. 21.
    Groom JR, Luster AD (2011) CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol 89(2):207–215.  https://doi.org/10.1038/icb.2010.158 CrossRefPubMedGoogle Scholar
  22. 22.
    Kollet O, Vagima Y, D’Uva G, Golan K, Canaani J, Itkin T, Gur-Cohen S, Kalinkovich A, Caglio G, Medaglia C, Ludin A, Lapid K, Shezen E, Neufeld-Cohen A, Varol D, Chen A, Lapidot T (2013) Physiologic corticosterone oscillations regulate murine hematopoietic stem/progenitor cell proliferation and CXCL12 expression by bone marrow stromal progenitors. Leukemia 27(10):2006–2015.  https://doi.org/10.1038/leu.2013.154 CrossRefPubMedGoogle Scholar
  23. 23.
    Groom JR (2015) Moving to the suburbs: T-cell positioning within lymph nodes during activation and memory. Immunol Cell Biol 93(4):330–336.  https://doi.org/10.1038/icb.2015.29 CrossRefPubMedGoogle Scholar
  24. 24.
    Lian J, Luster AD (2015) Chemokine-guided cell positioning in the lymph node orchestrates the generation of adaptive immune responses. Curr Opin Cell Biol 36:1–6.  https://doi.org/10.1016/j.ceb.2015.05.003 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Palomino DC, Marti LC (2015) Chemokines and immunity. Einstein 13(3):469–473.  https://doi.org/10.1590/s1679-45082015rb3438 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Satoh-Takayama N, Serafini N, Verrier T, Rekiki A, Renauld JC, Frankel G, Di Santo JP (2014) The chemokine receptor CXCR6 controls the functional topography of interleukin-22 producing intestinal innate lymphoid cells. Immunity 41(5):776–788.  https://doi.org/10.1016/j.immuni.2014.10.007 CrossRefPubMedGoogle Scholar
  27. 27.
    Dioszeghy V, Mondoulet L, Puteaux E, Dhelft V, Ligouis M, Plaquet C, Dupont C, Benhamou PH (2016) Differences in phenotype, homing properties and suppressive activities of regulatory T cells induced by epicutaneous, oral or sublingual immunotherapy in mice sensitized to peanut. Cell Mol Immunol.  https://doi.org/10.1038/cmi.2016.14 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gyoneva S, Ransohoff RM (2015) Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell-cell communication by chemokines. Trends Pharmacol Sci 36(7):471–480.  https://doi.org/10.1016/j.tips.2015.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Griffith JW, Sokol CL, Luster AD (2014) Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 32:659–702.  https://doi.org/10.1146/annurev-immunol-032713-120145 CrossRefPubMedGoogle Scholar
  30. 30.
    Krummel MF, Bartumeus F, Gerard A (2016) T cell migration, search strategies and mechanisms. Nat Rev Immunol 16(3):193–201.  https://doi.org/10.1038/nri.2015.16 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nguyen-Hoai T, Pham-Duc M, Gries M, Dorken B, Pezzutto A, Westermann J (2016) CCL4 as an adjuvant for DNA vaccination in a Her2/neu mouse tumor model. Cancer Gene Ther 23(6):162–167.  https://doi.org/10.1038/cgt.2016.9 CrossRefPubMedGoogle Scholar
  32. 32.
    Martinet L, Smyth MJ (2015) Balancing natural killer cell activation through paired receptors. Nat Rev Immunol 15(4):243–254.  https://doi.org/10.1038/nri3799 CrossRefPubMedGoogle Scholar
  33. 33.
    Zouggari Y, Ait-Oufella H, Bonnin P, Simon T, Sage AP, Guerin C, Vilar J, Caligiuri G, Tsiantoulas D, Laurans L, Dumeau E, Kotti S, Bruneval P, Charo IF, Binder CJ, Danchin N, Tedgui A, Tedder TF, Silvestre JS, Mallat Z (2013) B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med 19(10):1273–1280.  https://doi.org/10.1038/nm.3284 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Islam SA, Ling MF, Leung J, Shreffler WG, Luster AD (2013) Identification of human CCR8 as a CCL18 receptor. J Exp Med 210(10):1889–1898.  https://doi.org/10.1084/jem.20130240 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Nadif R, Zerimech F, Bouzigon E, Matran R (2013) The role of eosinophils and basophils in allergic diseases considering genetic findings. Curr Opin Allergy Clin Immunol 13(5):507–513.  https://doi.org/10.1097/ACI.0b013e328364e9c0 CrossRefPubMedGoogle Scholar
  36. 36.
    Orme IM, Robinson RT, Cooper AM (2015) The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol 16(1):57–63.  https://doi.org/10.1038/ni.3048 CrossRefPubMedGoogle Scholar
  37. 37.
    Chow Z, Banerjee A, Hickey MJ (2015) Controlling the fire–tissue-specific mechanisms of effector regulatory T-cell homing. Immunol Cell Biol 93(4):355–363.  https://doi.org/10.1038/icb.2014.117 CrossRefPubMedGoogle Scholar
  38. 38.
    Xu Y, Chu N, Qiu X, Gober HJ, Li D, Wang L (2016) The interconnected role of chemokines and estrogen in bone metabolism. Biosci Trends.  https://doi.org/10.5582/bst.2016.01072 CrossRefPubMedGoogle Scholar
  39. 39.
    Hansen M, Met O, Larsen NB, Rosenkilde MM, Andersen MH, Svane IM, Hjorto GM (2016) Autocrine CCL19 blocks dendritic cell migration toward weak gradients of CCL21. Cytotherapy 18(9):1187–1196.  https://doi.org/10.1016/j.jcyt.2016.06.010 CrossRefPubMedGoogle Scholar
  40. 40.
    Pang MF, Georgoudaki AM, Lambut L, Johansson J, Tabor V, Hagikura K, Jin Y, Jansson M, Alexander JS, Nelson CM, Jakobsson L, Betsholtz C, Sund M (2016) TGF-beta1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene 35(6):748–760.  https://doi.org/10.1038/onc.2015.133 CrossRefPubMedGoogle Scholar
  41. 41.
    Mirzaei A, Jalilian AR, Aghanejad A, Mazidi M, Yousefnia H, Shabani G, Ardaneh K, Geramifar P, Beiki D (2015) Preparation and evaluation of (68)Ga-ECC as a PET renal imaging agent. Nucl Med Mol Imaging 49(3):208–216.  https://doi.org/10.1007/s13139-015-0323-7 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Aghanejad A, Jalilian AR, Ardaneh K, Bolourinovin F, Yousefnia H, Samani AB (2015) Preparation and quality control of (68)Ga-citrate for PET applications. Asia Oceania J Nucl Med Biol 3(2):99–106Google Scholar
  43. 43.
    Aghanejad A, Jalilian AR, Maus S, Yousefnia H, Geramifar P, Beiki D (2016) Optimized production and quality control of 68 Ga-DOTATATE. Iran J Nucl Med 24(1):29–36Google Scholar
  44. 44.
    Jacobson O, Weiss ID, Szajek L, Farber JM, Kiesewetter DO (2009) 64Cu-AMD3100–a novel imaging agent for targeting chemokine receptor CXCR4. Bioorg Med Chem 17(4):1486–1493.  https://doi.org/10.1016/j.bmc.2009.01.014 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Weiss ID, Jacobson O, Kiesewetter DO, Jacobus JP, Szajek LP, Chen X, Farber JM (2012) Positron emission tomography imaging of tumors expressing the human chemokine receptor CXCR4 in mice with the use of 64Cu-AMD3100. Mol Imaging Biol 14(1):106–114.  https://doi.org/10.1007/s11307-010-0466-y CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Nimmagadda S, Pullambhatla M, Stone K, Green G, Bhujwalla ZM, Pomper MG (2010) Molecular imaging of CXCR4 receptor expression in human cancer xenografts with [64Cu]AMD3100 positron emission tomography. Can Res 70(10):3935–3944.  https://doi.org/10.1158/0008-5472.can-09-4396 CrossRefGoogle Scholar
  47. 47.
    Aghanejad A, Jalilian AR, Fazaeli Y, Beiki D, Fateh B, Khalaj A (2014) Radiosynthesis and biodistribution studies of [Zn-62/Cu-62]-plerixafor complex as a novel in vivo PET generator for chemokine receptor imaging. J Radioanal Nucl Chem 299(3):1635–1644.  https://doi.org/10.1007/s10967-013-2822-2 CrossRefGoogle Scholar
  48. 48.
    De Silva RA, Peyre K, Pullambhatla M, Fox JJ, Pomper MG, Nimmagadda S (2011) Imaging CXCR4 expression in human cancer xenografts: evaluation of monocyclam 64Cu-AMD3465. J Nucl Med 52(6):986–993.  https://doi.org/10.2967/jnumed.110.085613 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hartimath SV, van Waarde A, Dierckx RA, de Vries EF (2014) Evaluation of N-[(11)C]methyl-AMD3465 as a PET tracer for imaging of CXCR4 receptor expression in a C6 glioma tumor model. Mol Pharm 11(11):3810–3817.  https://doi.org/10.1021/mp500398r CrossRefPubMedGoogle Scholar
  50. 50.
    Hartimath SV, Khayum MA, van Waarde A, Dierckx R, de Vries EFJ (2017) N-[(11)C]Methyl-AMD3465 PET as a tool for in vivo measurement of chemokine receptor 4 (CXCR4) occupancy by therapeutic drugs. Mole Imaging Biol 19(4):570–577.  https://doi.org/10.1007/s11307-016-1028-8 CrossRefGoogle Scholar
  51. 51.
    Woodard LE, De Silva RA, Behnam-Azad B, Lisok A, Pullambhatla M, Lesniak WG, Mease RC, Pomper MG, Nimmagadda S (2014) Bridged cyclams as imaging agents for chemokine receptor 4 (CXCR4). Nucl Med Biol 41(7):552–561.  https://doi.org/10.1016/j.nucmedbio.2014.04.081 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Demoin DW, Shindo M, Zhang H, Edwards KJ, Serganova I, Pillarsetty NV, Lewis JS, Blasberg RG (2016) Synthesis and evaluation of an (18)F-labeled pyrimidine-pyridine amine for targeting CXCR4 receptors in gliomas. Nucl Med Biol 43(10):606–611.  https://doi.org/10.1016/j.nucmedbio.2016.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Hartimath SV, Domanska UM, Walenkamp AM, Rudi AJOD, de Vries EF (2013) [(99)mTc]O(2)-AMD3100 as a SPECT tracer for CXCR4 receptor imaging. Nucl Med Biol 40(4):507–517.  https://doi.org/10.1016/j.nucmedbio.2013.02.003 CrossRefPubMedGoogle Scholar
  54. 54.
    Zhang JM, Tian JH, Li TR, Guo HY, Shen L (2010) Tc-99 m-AMD3100: a novel potential receptor-targeting radiopharmaceutical for tumor imaging. Chin Chem Lett 21(4):461–463.  https://doi.org/10.1016/j.cclet.2009.12.018 CrossRefGoogle Scholar
  55. 55.
    Zhang X, You L, Chen S, Gao M, Guo Z, Du J, Lu J, Zhang X (2018) Development of a novel 99mTc-labelled small molecular antagonist for CXCR4 positive tumor imaging. J Labelled Compd Radiopharm.  https://doi.org/10.1002/jlcr.3608 CrossRefGoogle Scholar
  56. 56.
    Aghanejad A, Jalilian AR, Fazaeli Y, Alirezapoor B, Pouladi M, Beiki D, Maus S, Khalaj A (2014) Synthesis and evaluation of [(67)Ga]-AMD3100: a novel imaging agent for targeting the chemokine receptor CXCR4. Sci Pharm 82(1):29–42.  https://doi.org/10.3797/scipharm.1305-18 CrossRefPubMedGoogle Scholar
  57. 57.
    Ayuob A, Amir RJ, Fatemeh B, Alireza M, Khosrou A, Mostafa E, Davood B, Stephan M, Ali K (2015) Preparation and quality control of 111In-plerixafor for chemokine receptor CXCR4. Recent Pat Top Imaging 5(1):26–30.  https://doi.org/10.2174/2451827105666150903003608 CrossRefGoogle Scholar
  58. 58.
    Jackson IM, Scott PJH, Thompson S (2017) Clinical applications of radiolabeled peptides for PET. Semin Nucl Med 47(5):493–523.  https://doi.org/10.1053/j.semnuclmed.2017.05.007 CrossRefPubMedGoogle Scholar
  59. 59.
    Jacobson O, Weiss ID, Szajek LP, Niu G, Ma Y, Kiesewetter DO, Farber JM, Chen X (2011) PET imaging of CXCR4 using copper-64 labeled peptide antagonist. Theranostics 1:251–262CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Jacobson O, Weiss ID, Kiesewetter DO, Farber JM, Chen X (2010) PET of tumor CXCR4 expression with 4-18F-T140. J Nucl Med 51(11):1796–1804.  https://doi.org/10.2967/jnumed.110.079418 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Yan X, Niu G, Wang Z, Yang X, Kiesewetter DO, Jacobson O, Shen B, Chen X (2016) Al[18F]NOTA-T140 peptide for noninvasive visualization of CXCR4 expression. Mole Imaging Biol 18(1):135–142.  https://doi.org/10.1007/s11307-015-0872-2 CrossRefGoogle Scholar
  62. 62.
    Wang Z, Zhang M, Wang L, Wang S, Kang F, Li G, Jacobson O, Niu G, Yang W, Wang J, Chen X (2015) Prospective study of (68)Ga-NOTA-NFB: radiation dosimetry in healthy volunteers and first application in glioma patients. Theranostics 5(8):882–889.  https://doi.org/10.7150/thno.12303 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Luehmann HP, Detering L, Fors BP, Pressly ED, Woodard PK, Randolph GJ, Gropler RJ, Hawker CJ, Liu Y (2016) PET/CT imaging of chemokine receptors in inflammatory atherosclerosis using targeted nanoparticles. J Nucl Med 57(7):1124–1129.  https://doi.org/10.2967/jnumed.115.166751 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Oltmanns D, Zitzmann-Kolbe S, Mueller A, Bauder-Wuest U, Schaefer M, Eder M, Haberkorn U, Eisenhut M (2011) Zn(II)-bis(cyclen) complexes and the imaging of apoptosis/necrosis. Bioconjug Chem 22(12):2611–2624.  https://doi.org/10.1021/bc200457b CrossRefPubMedGoogle Scholar
  65. 65.
    Li X, Heber D, Leike T, Beitzke D, Lu X, Zhang X, Wei Y, Mitterhauser M, Wadsak W, Kropf S, Wester HJ, Loewe C, Hacker M, Haug AR (2017) [68 Ga]Pentixafor-PET/MRI for the detection of Chemokine receptor 4 expression in atherosclerotic plaques. Eur J Nucl Med Mol Imaging.  https://doi.org/10.1007/s00259-017-3831-0 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Demmer O, Dijkgraaf I, Schumacher U, Marinelli L, Cosconati S, Gourni E, Wester HJ, Kessler H (2011) Design, synthesis, and functionalization of dimeric peptides targeting chemokine receptor CXCR4. J Med Chem 54(21):7648–7662.  https://doi.org/10.1021/jm2009716 CrossRefPubMedGoogle Scholar
  67. 67.
    Gourni E, Demmer O, Schottelius M, D’Alessandria C, Schulz S, Dijkgraaf I, Schumacher U, Schwaiger M, Kessler H, Wester HJ (2011) PET of CXCR4 expression by a (68)Ga-labeled highly specific targeted contrast agent. J Nucl Med 52(11):1803–1810.  https://doi.org/10.2967/jnumed.111.098798 CrossRefPubMedGoogle Scholar
  68. 68.
    Wester HJ, Keller U, Schottelius M, Beer A, Philipp-Abbrederis K, Hoffmann F, Simecek J, Gerngross C, Lassmann M, Herrmann K, Pellegata N, Rudelius M, Kessler H, Schwaiger M (2015) Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics 5(6):618–630.  https://doi.org/10.7150/thno.11251 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Vag T, Gerngross C, Herhaus P, Eiber M, Philipp-Abbrederis K, Graner FP, Ettl J, Keller U, Wester HJ, Schwaiger M (2016) First experience with chemokine receptor CXCR4-targeted PET imaging of patients with solid cancers. J Nucl Med 57(5):741–746.  https://doi.org/10.2967/jnumed.115.161034 CrossRefPubMedGoogle Scholar
  70. 70.
    Lapa C, Luckerath K, Rudelius M, Schmid JS, Schoene A, Schirbel A, Samnick S, Pelzer T, Buck AK, Kropf S, Wester HJ, Herrmann K (2016) [68 Ga]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression in small cell lung cancer–initial experience. Oncotarget 7(8):9288–9295.  https://doi.org/10.18632/oncotarget.7063 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Ghadge SK, Muhlstedt S, Ozcelik C, Bader M (2011) SDF-1alpha as a therapeutic stem cell homing factor in myocardial infarction. Pharmacol Ther 129(1):97–108.  https://doi.org/10.1016/j.pharmthera.2010.09.011 CrossRefPubMedGoogle Scholar
  72. 72.
    Derlin T, Jonigk D, Bauersachs J, Bengel FM (2016) Molecular imaging of chemokine receptor CXCR4 in non-small cell lung cancer using 68 Ga-Pentixafor PET/CT: comparison with 18F-FDG. Clin Nucl Med 41(4):e204–e205.  https://doi.org/10.1097/rlu.0000000000001092 CrossRefPubMedGoogle Scholar
  73. 73.
    Thackeray JT, Derlin T, Haghikia A, Napp LC, Wang Y, Ross TL, Schafer A, Tillmanns J, Wester HJ, Wollert KC, Bauersachs J, Bengel FM (2015) Molecular imaging of the chemokine receptor CXCR4 after acute myocardial infarction. JACC Cardiovasc Imaging 8(12):1417–1426.  https://doi.org/10.1016/j.jcmg.2015.09.008 CrossRefPubMedGoogle Scholar
  74. 74.
    Bluemel C, Hahner S, Heinze B, Fassnacht M, Kroiss M, Bley TA, Wester HJ, Kropf S, Lapa C, Schirbel A, Buck AK, Herrmann K (2017) Investigating the chemokine receptor 4 as potential theranostic target in adrenocortical cancer patients. Clin Nucl Med 42(1):e29–e34.  https://doi.org/10.1097/rlu.0000000000001435 CrossRefPubMedGoogle Scholar
  75. 75.
    Lapa C, Luckerath K, Kleinlein I, Monoranu CM, Linsenmann T, Kessler AF, Rudelius M, Kropf S, Buck AK, Ernestus RI, Wester HJ, Lohr M, Herrmann K (2016) (68)Ga-Pentixafor-PET/CT for imaging of chemokine receptor 4 expression in glioblastoma. Theranostics 6(3):428–434.  https://doi.org/10.7150/thno.13986 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Philipp-Abbrederis K, Herrmann K, Knop S, Schottelius M, Eiber M, Luckerath K, Pietschmann E, Habringer S, Gerngross C, Franke K, Rudelius M, Schirbel A, Lapa C, Schwamborn K, Steidle S, Hartmann E, Rosenwald A, Kropf S, Beer AJ, Peschel C, Einsele H, Buck AK, Schwaiger M, Gotze K, Wester HJ, Keller U (2015) In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Mol Med 7(4):477–487.  https://doi.org/10.15252/emmm.201404698 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Poschenrieder A, Schottelius M, Schwaiger M, Wester HJ (2016) Preclinical evaluation of [(68)Ga]NOTA-pentixafor for PET imaging of CXCR4 expression in vivo—a comparison to [(68)Ga]pentixafor. EJNMMI Res 6(1):70.  https://doi.org/10.1186/s13550-016-0227-2 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Hyafil F, Pelisek J, Laitinen I, Schottelius M, Mohring M, Doring Y, van der Vorst EP, Kallmayer M, Steiger K, Poschenrieder A, Notni J, Fischer J, Baumgartner C, Rischpler C, Nekolla SG, Weber C, Eckstein HH, Wester HJ, Schwaiger M (2017) Imaging the cytokine receptor CXCR4 in atherosclerotic plaques with the radiotracer (68)Ga-pentixafor for PET. J Nucl Med 58(3):499–506.  https://doi.org/10.2967/jnumed.116.179663 CrossRefPubMedGoogle Scholar
  79. 79.
    Bouter C, Meller B, Sahlmann CO, Staab W, Wester HJ, Kropf S, Meller J (2017) Imaging chemokine receptor CXCR4 in chronic infection of the bone with (68)Ga-Pentixafor-PET/CT—first insights. J Nucl Med.  https://doi.org/10.2967/jnumed.117.193854 CrossRefPubMedGoogle Scholar
  80. 80.
    Leisser A, Mayerhà M, Raderer M, Wadsak W, Mitterhauser M, Pfaff S, Kropf S, Wester H, Hacker M, Hartenbach M (2017) Non-invasive evaluation of CXCR4 expression of MALT lymphoma using 68 Ga-Pentixafor PET/MRI-a prospective study. J Nucl Med 58(supplement 1):563Google Scholar
  81. 81.
    Leisser A, Nejabat M, Ba-Ssalamah A, Schindl M, Prager G, Wadsak W, Mitterhauser M, Pfaff S, Kropf S, Wester H (2017) Evaluation of CXCR4 expression of pancreatic cancer with 68 Ga-Pentixafor PET/MRI-initial experience. J Nucl Med 58(supplement 1):496Google Scholar
  82. 82.
    Poschenrieder A, Schottelius M, Osl T, Schwaiger M, Wester H-J (2017) [64Cu]NOTA-pentixather enables high resolution PET imaging of CXCR4 expression in a preclinical lymphoma model. EJNMMI Radiopharm Chem 2(1):2.  https://doi.org/10.1186/s41181-016-0020-6 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Azad BB, Chatterjee S, Lesniak WG, Lisok A, Pullambhatla M, Bhujwalla ZM, Pomper MG, Nimmagadda S (2016) A fully human CXCR4 antibody demonstrates diagnostic utility and therapeutic efficacy in solid tumor xenografts. Oncotarget 7(11):12344–12358.  https://doi.org/10.18632/oncotarget.7111 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Misra P, Lebeche D, Ly H, Schwarzkopf M, Diaz G, Hajjar RJ, Schecter AD, Frangioni JV (2008) Quantitation of CXCR4 expression in myocardial infarction using 99 mTc-labeled SDF-1alpha. J Nucl Med 49(6):963–969.  https://doi.org/10.2967/jnumed.107.050054 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Lesniak WG, Sikorska E, Shallal H, Behnam Azad B, Lisok A, Pullambhatla M, Pomper MG, Nimmagadda S (2015) Structural characterization and in vivo evaluation of beta-Hairpin peptidomimetics as specific CXCR4 imaging agents. Mol Pharm 12(3):941–953.  https://doi.org/10.1021/mp500799q CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Fu P, Tian L, Cao X, Li L, Xu P, Zhao C (2016) Imaging CXCR4 expression with (99m)Tc-radiolabeled small-interference RNA in experimental human breast cancer xenografts. Mol Imaging Biol 18(3):353–359.  https://doi.org/10.1007/s11307-015-0899-4 CrossRefPubMedGoogle Scholar
  87. 87.
    De A, Gambhir SS (2005) Noninvasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer. FASEB J 19(14):2017–2019.  https://doi.org/10.1096/fj.05-4628fje CrossRefPubMedGoogle Scholar
  88. 88.
    Luker KE, Gupta M, Luker GD (2009) Imaging chemokine receptor dimerization with firefly luciferase complementation. FASEB J 23(3):823–834.  https://doi.org/10.1096/fj.08-116749 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Luker KE, Mihalko LA, Schmidt BT, Lewin SA, Ray P, Shcherbo D, Chudakov DM, Luker GD (2011) In vivo imaging of ligand receptor binding with Gaussia luciferase complementation. Nat Med 18(1):172–177.  https://doi.org/10.1038/nm.2590 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Nishizawa K, Nishiyama H, Oishi S, Tanahara N, Kotani H, Mikami Y, Toda Y, Evans BJ, Peiper SC, Saito R, Watanabe J, Fujii N, Ogawa O (2010) Fluorescent imaging of high-grade bladder cancer using a specific antagonist for chemokine receptor CXCR4. Int J Cancer 127(5):1180–1187.  https://doi.org/10.1002/ijc.25145 CrossRefPubMedGoogle Scholar
  91. 91.
    Santagata S, Portella L, Napolitano M, Greco A, D’Alterio C, Barone MV, Luciano A, Gramanzini M, Auletta L, Arra C, Zannetti A, Scala S (2017) A novel CXCR4-targeted near-infrared (NIR) fluorescent probe (Peptide R-NIR750) specifically detects CXCR4 expressing tumors. Sci Rep 7(1):2554.  https://doi.org/10.1038/s41598-017-02818-6 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Guan G, Lu Y, Zhu X, Liu L, Chen J, Ma Q, Zhang Y, Wen Y, Yang L, Liu T, Wang W, Ran H, Qiu X, Ke S, Zhou Y (2015) CXCR4-targeted near-infrared imaging allows detection of orthotopic and metastatic human osteosarcoma in a mouse model. Sci Rep 5:15244.  https://doi.org/10.1038/srep15244 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Meincke M, Tiwari S, Hattermann K, Kalthoff H, Mentlein R (2011) Near-infrared molecular imaging of tumors via chemokine receptors CXCR4 and CXCR7. Clin Exp Metas 28(8):713–720.  https://doi.org/10.1007/s10585-011-9403-y CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Medical Radiation Sciences Research TeamTabriz University of Medical SciencesTabrizIran
  2. 2.Research Centre for Pharmaceutical NanotechnologyTabriz University of Medical SciencesTabrizIran
  3. 3.Radioisotope Products and Radiation Technology Section, Department of Nuclear Sciences and ApplicationsInternational Atomic Energy Agency (IAEA), Vienna International CentreViennaAustria

Personalised recommendations