Influence of impurity elements on the corrosion of α-uranium surface: a density functional theory study

Article
  • 16 Downloads

Abstract

Influence of substitutional Fe, Al and Mg atoms on the corrosion of α-U(110) surface was studied by DFT + U method. The calculations results indicate that impurity atoms inhibit the dissociation of H2O molecular. Although the impurity atoms do not impede the dissociation of O2 molecular, they lower the binding energy of the dissociated O atoms with the substitutional surfaces. Through the investigation on the surface diffusion and into-bulk penetration, it could be confirmed that Fe, Al and Mg atoms accelerate the hydrogenation of α-uranium surface, while improve the anti-oxidizing ability of α-uranium.

Keywords

α-U(110) surface Impurity atoms Corrosion DFT + U 

Notes

Acknowledgements

This work was supported by Nature Science Foundation of China under Contract Nos. 51401237, 11474358 and 51271198.

References

  1. 1.
    Schroeder JB, Vaughan DA, Schwartz CM (1959) Aqueous uranium corrosion at 100°C. J Electrochem Soc 165:486–489CrossRefGoogle Scholar
  2. 2.
    Leibowitz L, Schnizlein JG, Bingle JD (1961) The kinetics of oxidation of uranium between 125 and 250°C. J Electrochem Soc 108:1155–1161CrossRefGoogle Scholar
  3. 3.
    Ritchie AG, Greenwood RC, Randles SJ (1986) The kinetics of the uranium–oxygen–water vapour reaction between 40 and 100°C. J Nucl Mater 139:121–136CrossRefGoogle Scholar
  4. 4.
    Ritchie AG (1981) A review of the rates of reaction of uranium with oxygen and water vapour at temperature up to 300°C. J Nucl Mater 102:170–182CrossRefGoogle Scholar
  5. 5.
    Hayward PJ, Evans DG, Taylor P (1994) Oxidation of uranium in steam. J Nucl Mater 217:82–92CrossRefGoogle Scholar
  6. 6.
    Hayward PJ, Evans DG, Taylor P (1992) Oxidation of uranium in argon–25% oxygen at 190–610°C. J Nucl Mater 187:215–222CrossRefGoogle Scholar
  7. 7.
    McGillivray GW, Geeson DA, Greenwood RC (1994) Studies of the kinetics and mechanism of the oxidation of uranium by dry and moist air—a model for determining the oxidation rate over a wide range of temperatures and water vapour pressures. J Nucl Mater 208:81–97CrossRefGoogle Scholar
  8. 8.
    Jones CP, Scott TB, Petherbridge JR (2013) A surface science study of the initial stages of hydrogen corrosion on uranium metal and the role played by grain microstructure. Solid State Ion 231:81–86CrossRefGoogle Scholar
  9. 9.
    Hill MA, Schulze PK, Bingert JF (2013) Filiform-mode hydride corrosion of uranium surfaces. J Nucl Mater 442:106–115CrossRefGoogle Scholar
  10. 10.
    Winer K (1987) Interaction of water vapor with clean and oxygen-covered uranium surfaces. Surf Sci 183:67–99CrossRefGoogle Scholar
  11. 11.
    Kelly D, Lillard JA, Manner WL (2001) Surface characterization of oxidative corrosion of U–Nb alloys. J Vac Sci Technol A 19:1959–1964CrossRefGoogle Scholar
  12. 12.
    Nornes SB, Meisenheimer RG (1979) X-ray photoelectron spectroscopy study of the chemisorption of water on uranium and thorium and oxygen on uranium. Surf Sci.  https://doi.org/10.1016/0039-6028(79)90575-2 Google Scholar
  13. 13.
    Dholabhai PP, Ray AK (2007) A density functional study of carbon monoxide adsorption on (100) surface of γ-uranium. J Alloy Compd 444–445:356–362CrossRefGoogle Scholar
  14. 14.
    Huda MN, Ray AK (2005) Density functional study of O2 adsorption on (100) surface of γ-uranium. Int J Quantum Chem 102:98–105CrossRefGoogle Scholar
  15. 15.
    Nie JL, Xiao HY, Zu XT (2008) Hydrogen adsorption, dissociation and diffusion on the α-U(001) surface. J Phys Condens Matter 20(445001):1–10Google Scholar
  16. 16.
    Allen GC, Tucker PM (1973) Surface oxidation of uranium metal as studied by X-ray photoelectron spectroscopy. J Chem Soc Dalton Trans 5:470–474CrossRefGoogle Scholar
  17. 17.
    Swissa W, Bloch J, Atzmony U (1989) Interactions of oxygen and uranium studied by combined AES, XPS and DRS techniques. Surf Sci 214:323–333CrossRefGoogle Scholar
  18. 18.
    Gouder T, Colmenares C, Naegele JR (1989) Study of the surface oxidation of uranium by UV photoemission spectroscopy. Surf Sci 235:280–286CrossRefGoogle Scholar
  19. 19.
    Bloch J, Atzmony U, Dariel MP (1982) Surface spectroscopy studies of the oxidation behavior of uranium. J Nucl Mater 105:196–200CrossRefGoogle Scholar
  20. 20.
    Allen GC, Tucker PM, Lewis RA (1984) X-ray photoelectron spectroscopy study of the initial oxidation of uranium metal in oxygen + water + water vapour mixtures. J Chem Soc Faraday Trans 2(80):991–1000CrossRefGoogle Scholar
  21. 21.
    Finnis MW, Lozovoi AY, Alavi A (2005) The oxidation of NiAl: what can we learn from ab initio calculations. Annu Rev Mater Res 35:167–207CrossRefGoogle Scholar
  22. 22.
    Evarestov RA, Bandura AV, Losev MV (2008) A first-principles DFT study of UN bulk and (001) surface: comparative LCAO and PW calculations. J Comput Chem 29:2079–2087CrossRefGoogle Scholar
  23. 23.
    Grabias E, Majdan M (2017) A DFT study of uranyl hydroxyl complexes: structure and stability of trimmers and tetramers. J Radioanal Nucl Chem 313:455–465CrossRefGoogle Scholar
  24. 24.
    Tian XF, Wang H, Xiao HX (2014) Adsorption of water on UO2(111) surface: density functional theory calculations. Comput Mater Sci 91:364–371CrossRefGoogle Scholar
  25. 25.
    Li XL, Luo J, Lin YW (2016) Density functional theory investigation of nonsymmetrically substituted uranyl-salophen complexes. J Radioanal Nucl Chem 307:407–417CrossRefGoogle Scholar
  26. 26.
    Li P, Niu WX, Gao T (2015) Mechanistic aspects of the reaction of uranium atom with H2O in the gas phase. J Radioanal Nucl Chem 304:489–499CrossRefGoogle Scholar
  27. 27.
    Huang SQS, Zeng XL, Xu SY (2016) Density functional study of O2 molecule and O atom adsorption on α-U(001) surface. Comput Theor Chem 1093:91–97CrossRefGoogle Scholar
  28. 28.
    Huang SQS, Zeng XL, Zhao FQ (2016) Density functional study of H2O molecule adsorption on α-U(001) surface. J Mol Model 22(88):1–8Google Scholar
  29. 29.
    Fichet P, Mauchien P, Moulin C (1999) Determination of impurities in uranium and plutonium dioxides by laser-induced breakdown spectroscopy. Appl Spectrosc 53:1111–1117CrossRefGoogle Scholar
  30. 30.
    Burger S, Riciputi LR, Bostick DA (2007) Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method. J Radioanal Nucl Chem 274:491–505CrossRefGoogle Scholar
  31. 31.
    Shi P, Yang Y, Ao BY (2014) Influence of surface substitutional Ti atom on hydrogen adsorption, dissociation, and diffusion behaviors on the α-U(001) surface. J Phys Chem C 118:26634–26640CrossRefGoogle Scholar
  32. 32.
    Wdowik UD, Piekarz P, Legut D (2016) Effect of spin–orbit and on-site Coulomb interactions on the electronic structure and lattice dynamics of uranium monocarbide. Phys Rev B 94(054303):1–9Google Scholar
  33. 33.
    Freyss M (2010) First-principles study of uranium carbide: accommodation of point defects and of helium, xenon, and oxygen impurities. Phys Rev B 81(014101):1–16Google Scholar
  34. 34.
    Beridze G, Kowalski PM (2014) Benchmarking the DFT + U method for thermochemical calculations of uranium molecular compounds and solids. J Phys Chem A 118:11797–11810CrossRefGoogle Scholar
  35. 35.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integration. Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  36. 36.
    Sun WW, Marco ID, Korzhavyi P (2014) A LDA + U and LDA + DMFT study of uranium mononitride: from nonmagnetic to paramagnetic and ferromagnetic. Mater Res Soc Symp Proc 1683:509–514CrossRefGoogle Scholar
  37. 37.
    Lan JH, Zhao ZC, Wu Q (2013) First-principles DFT + U modeling of defect behaviors in anti-ferromagnetic uranium mononitride. J Appl Phys 114(223516):1–7Google Scholar
  38. 38.
    Shi HL, Zhang P, Li SS (2009) Electronic structures and mechanical properties of uranium monocarbide from first-principles LDA + U and GGA + U calculations. Phys Lett A 373:3577–3581CrossRefGoogle Scholar
  39. 39.
    Dorado B, Amadon B, Freyss M (2009) DFT + U calculations of the ground state and metastable states of uranium dioxide. Phys Rev B 79(235125):1–8Google Scholar
  40. 40.
    Dudarev SL, Botton GA, Savrasov SY (1998) Electron-energy-loos spectra and the structural stability of nickel oxide: an LSDA + U study. Phys Rev B 57:1505–1509CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Xi’an High Technology InstituteXi’anPeople’s Republic of China

Personalised recommendations