Effect of superplasticizers on Ni behaviour in cementitious environments

  • David García
  • Mireia Grivé
  • Lara Duro
  • Stéphane Brassinnes
  • Joan de Pablo
Article

Abstract

Nickel hydroxide solubility has been studied in this work in different cementitious systems. Our results indicate that once Glenium® 27, cement superplasticizer admixture, is added to water and then mixed with cement, this polymeric material is stabilized and not released back to the aqueous solution, with negligible effects on the mobility of nickel. Contrary to that, when Glenium® 27 is added directly in solution at high dosages, an important effect is observed on nickel behaviour. Thermodynamic calculations indicate that the effect of such component on Ni is likely the effect that other small organics could have over this element.

Keywords

Solubility Nickel Superplasticizer Waste disposal 

Notes

Acknowledgements

The research leading to these results has been funded by the Belgian Agency for Radioactive Waste and Enriched Fissile materials (Ondraf-Niras). Dra. Susanna Valls (UPC, Construction Engineering Department) is acknowledge for their support during concrete samples preparation. We thank two anonymous reviewers for helpful comments on earlier drafts of the manuscript.

References

  1. 1.
    Griesser A (2002) Cement-superplasticizer interactions at ambient temperatures. PhD Thesis, ETHGoogle Scholar
  2. 2.
    Craeye B, De Schutter G, Van Humbeeck H, Van Cotthem A (2009) Early age behaviour of concrete supercontainers for radioactive waste disposal. Nucl Eng Des 239:23–35CrossRefGoogle Scholar
  3. 3.
    Plank J, Pöllmann K, Zouaoui N et al (2008) Synthesis and performance of methacrylic ester based polycarboxylate superplasticizers possessing hydroxy terminated poly (ethylene glycol) side chains. Cem Concr Res 38:1210–1216CrossRefGoogle Scholar
  4. 4.
    Rosskopfová O, Galamboš M, Rajec P (2011) Determination of 63Ni in the low level solid radioactive waste. J Radioanal Nucl Chem 289:251–256CrossRefGoogle Scholar
  5. 5.
    Taylor HFW (1997) Cement chemistry, 2nd edn. Thomas Telford, LondonCrossRefGoogle Scholar
  6. 6.
    Glaus MA, Van Loon LR (2004) A generic procedure for the assessment of the effect of concrete admixtures on the retention behaviour of cement for radionuclides: concept and case studies. PSI Nr. 04-02Google Scholar
  7. 7.
    Andersson M, Ervanne H, Glaus MA, et al (2008) Development of methodology for evaluation of long-term safety aspects of organic cement paste components. POSIVA Work Rep 2008-28Google Scholar
  8. 8.
    Gaona X, Montoya V, Colàs E et al (2008) Review of the complexation of tetravalent actinides by ISA and gluconate under alkaline to hyperalkaline conditions. J Contam Hydrol 102:217–227CrossRefGoogle Scholar
  9. 9.
    Colàs Anguita E (2014) Complexation of Th(IV) and U (VI) by polyhydroxy and polyamino carboxylic acids. PhD Thesis, Universitat Politècncia de CatalunyaGoogle Scholar
  10. 10.
    Allard S (2005) Investigations of α-D-isosaccharinate: fundamental properties and complexation. PhD Thesis, Chalmers University of TechnologyGoogle Scholar
  11. 11.
    Allard S, Ekberg C (2006) Complexing properties of alpha-isosaccharinate: thorium. Radiochim Acta 94:537–540CrossRefGoogle Scholar
  12. 12.
    Holgersson S, Albinsson Y, Allard B et al (1998) Effects of gluco-isosaccharinate on Cs, Ni, Pm and Th sorption onto, and diffusion into cement. Radiochim Acta 82:393–398Google Scholar
  13. 13.
    Rai D, Rao L, Moore DA (1998) The influence of isosaccharinic acid on the solubility of Np(IV) hydrous oxide. Radiochim Acta 83:9–13CrossRefGoogle Scholar
  14. 14.
    Evans N, Warwick P, Felipe-Sotelo M, Vines S (2012) Prediction and measurement of complexation of radionuclide mixtures by α-isosaccharinic, gluconic and picolinic acids. J Radioanal Nucl Chem 293:725–730CrossRefGoogle Scholar
  15. 15.
    Evans N, Antón-Gascón S, Vines S, Felipe-Sotelo M (2012) Effect of competition from other metals on nickel complexation by α-isosaccharinic, gluconic and picolinic acids. Mineral Mag 76:3425–3434CrossRefGoogle Scholar
  16. 16.
    Warwick P, Evans N, Vines S (2006) Studies on some divalent metal α-isosaccharinic acid complexes. Radiochim Acta 94:363–368CrossRefGoogle Scholar
  17. 17.
    Svensson M, Berg M, Ifwer K et al (2007) The effect of isosaccharinic acid (ISA) on the mobilization of metals in municipal solid waste incineration (MSWI) dry scrubber residue. J Hazard Mater 144:477–484CrossRefGoogle Scholar
  18. 18.
    Vercammen K (2000) Complexation of calcium, thorium and europium by α-isosaccharinic acid under alkaline conditions. PhD Thesis, Swiss Federal Institute of Technology ZurichGoogle Scholar
  19. 19.
    Vercammen K, Glaus MA, Van Loon LR (2001) Complexation of Th(IV) and Eu(III) by α-isosaccharinic acid under alkaline conditions. Radiochim Acta 89:393–401CrossRefGoogle Scholar
  20. 20.
    Tits J, Bradbury M, Eckert P, et al (2002) The uptake of Eu(III) and Th(IV) by calcite under hyperalkaline conditions: the influence of gluconic and isosaccharinic acid. PSI Nr. 02-03Google Scholar
  21. 21.
    Tits J, Wieland E, Bradbury MH (2005) The effect of isosaccharinic acid and gluconic acid on the retention of Eu(III), Am(III) and Th(IV) by calcite. Appl Geochem 20:2082–2096CrossRefGoogle Scholar
  22. 22.
    Warwick P, Evans N, Hall T, Vines S (2004) Stability constants of uranium (IV)-α-isosaccharinic acid and gluconic acid complexes. Radiochim Acta 92:897–902CrossRefGoogle Scholar
  23. 23.
    Warwick P, Evans N, Hall T, Vines S (2003) Complexation of Ni(II) by α-isosaccharinic acid and gluconic acid from pH 7 to pH 13. Radiochim Acta 91:233–240CrossRefGoogle Scholar
  24. 24.
    Rai D, Yui M, Moore DA, Rao L (2009) Thermodynamic model for ThO2(am) solubility in isosaccharinate solutions. J Solut Chem 38:1573–1587CrossRefGoogle Scholar
  25. 25.
    Zhernosekov KP, Mauerhofer E, Getahun G et al (2003) Complex formation of Tb3+ with glycolate, D-gluconate and alpha-isosaccharinate in neutral aqueous perchlorate solutions. Radiochim Acta 91:599–602CrossRefGoogle Scholar
  26. 26.
    Bagawde S, Ramakrishna V, Patil S (1976) Oxalate complexing of tetravalent actinides. J Inorg Nucl Chem 38:1669–1672CrossRefGoogle Scholar
  27. 27.
    Borkowski M, Choppin GR, Moore RC (2003) Thermodynamic modeling of metal-ligand interactions in high ionic strength NaCl solutions: the Ni2+-oxalate system. Radiochim Acta 91:169–172CrossRefGoogle Scholar
  28. 28.
    Borkowski M, Choppin GR, Moore RC (2000) Thermodynamic modeling of metal-ligand interactions in high ionic strength NaCl solutions: the Co2+-oxalate system. Radiochim Acta 88:599–602CrossRefGoogle Scholar
  29. 29.
    Borkowski M, Moore RC, Bronikowski MG et al (2001) Thermodynamic modeling of actinide complexation with oxalate at high ionic strength. J Radioanal Nucl Chem 248:467–471CrossRefGoogle Scholar
  30. 30.
    Choppin G, Chen JF (1995) Complexation of Am(III) by oxalate in NaClO4 media. In: V international conference on the chemistry and migration behaviour of actinides and fission products in the geosphere, Saint-Malo, FranceGoogle Scholar
  31. 31.
    Thakur P, Mathur JN, Dodge CJ et al (2006) Thermodynamics and the structural aspects of the ternary complexes of Am(III), Cm(III) and Eu(III) with Ox and EDTA + Ox. Dalton Trans 40:4829–4837CrossRefGoogle Scholar
  32. 32.
    Hummel W, Andereeg G, Rao L et al (2005) Chemical thermodynamics of compounds and complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with selected organic ligands. Elsevier Science, AmsterdamGoogle Scholar
  33. 33.
    Peñuela J, Martinez D, Araujo ML et al (2011) Speciation of the nickel (II) complexes with oxalic and malonic acids studied in 1.0 mol·dm−3 NaCl at 25°C. J Coord Chem 64:2698–2705CrossRefGoogle Scholar
  34. 34.
    Van Loon LR, Hummel W (1995) The radiolytic and chemical degradation of organic ion exchange resins under alkaline conditions: effect on radionuclide speciation. PSI Nr. 95-13Google Scholar
  35. 35.
    Kitamura A, Fujiwara K, Mihara M et al (2013) Thorium and americium solubilities in cement pore water containing superplasticiser compared with thermodynamic calculations. J Radioanal Nucl Chem 298:485–493CrossRefGoogle Scholar
  36. 36.
    Young AJ (2012) The stability of cement superplasticiser and its effect on radionuclide behaviour. PhD Thesis, University of LoughboroughGoogle Scholar
  37. 37.
    Wieland E, Van Loon LR (2003) Cementitious near-field sorption data base for performance assessment of an ILW repository in Opalinus Clay. PSI Nr. 03-06Google Scholar
  38. 38.
    AENOR (2005) Methods of testing cement—Part 1: determination of strength. UNE-EN-196Google Scholar
  39. 39.
    Stumpf T, Tits J, Walther C et al (2004) Uptake of trivalent actinides (Curium (III)) by hardened cement paste: a time-resolved laser fluorescence spectroscopy study. J Colloid Interface Sci 276:118–124CrossRefGoogle Scholar
  40. 40.
    AENOR (2003) Characterization of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. Part 2: One stage batch test at a liquid to solid ratio of 10 k/kg for materials with particle size below 4 mm (without or with size reduction). UNE-EN 12457-2Google Scholar
  41. 41.
    Castellote M, Andrade C, Castillo A (2009) Characterisation of cementitious matrices for a surface disposal of LLW. Report 19.171. Centro Superior de Investigaciones Científicas - Instituto de Ciencias de la Construccion Eduardo Torroja (CSIC-ICCEJ)Google Scholar
  42. 42.
    Parkhurst DL, Appelo CAJ (2013) Groundwater, book 6, modelling techniques. Techniques and methods 6 A43. USGSGoogle Scholar
  43. 43.
    Giffaut E, Grivé M, Blanc P et al (2014) Andra thermodynamic database for performance assessment: thermoChimie. Appl Geochem 49:225–236CrossRefGoogle Scholar
  44. 44.
    Grivé M, Duro L, Colàs E, Giffaut E (2015) Thermodynamic data selection applied to radionuclides and chemotoxic elements: an overview of the ThermoChimie-TDB. Appl Geochem 55:85–94CrossRefGoogle Scholar
  45. 45.
    Krupka KM, Serne JB, Bradbury RJ (1998) Effects on radionuclide concentrations by cement/ground-water interactions in support of the performance assessment of low-level radioactive waste disposal facilities. NUREG/CR-6377 PNNL-11408. U.S. Regulatory CommissionGoogle Scholar
  46. 46.
    Gayer KH, Garrett AB (1949) The equilibria of nickel hydroxide, Ni(OH)2, in solutions of hydrochloric acid and sodium hydroxide at 25°C. J Am Chem Soc 71:2973–2975CrossRefGoogle Scholar
  47. 47.
    Mattigod SV, Rai D, Felmy AR, Rao L (1997) Solubility and solubility product of crystalline Ni(OH)2. J Solut Chem 26:391–403CrossRefGoogle Scholar
  48. 48.
    Aggarwal S, Angus MJ, Hibbert RC, Tyson A (2001) Radionuclide concentration in cementitious pore-fluids extracted under high pressure. AEA Technology PLC report (for UK Nirex), report number AEAT/R/ENV/0231Google Scholar
  49. 49.
    González-Siso MR, Gaona X, Duro L et al (2018) Thermodynamic model of Ni(II) solubility, hydrolysis and complex formation with ISA. Radiochim Acta 106:31.  https://doi.org/10.1515/ract-2017-2762 CrossRefGoogle Scholar
  50. 50.
    Greenfield BF, Ilett DJ, Ito M et al (1998) The effect of cement additives on radionuclide solubilities. Radiochim Acta 82:27–32CrossRefGoogle Scholar
  51. 51.
    NDA (2015) Solubility studies in the presence of polycarboxylate ether superplasticisers. NDA DRP LOT 2: integrated waste management WP/B2/7. NDAGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Amphos21BarcelonaSpain
  2. 2.Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS)BrusselsBelgium
  3. 3.Fundació CTM Centre Tecnològic, Environmental Technology AreaManresaSpain

Personalised recommendations