Incompatible elements in bottom sediments of the Itaipú Dam Reservoir by EDXRF

  • J. F. Facetti MasulliEmail author
  • Peter Kump
  • Zulma V. de Diaz
  • Virginia R. de González


Sediments play an important role in the distribution of trace elements in the aquatic system and act as a sink for metals. Incompatible elements (IEs) such as rare earth elements as well as other refractory are considered useful tracers of geochemical processes. In this work using XRF analytical techniques, the refractory Ti,Y, Zr, Nb, Ba, La, Ce, and Nd as well as Fe and Mn contents in bottom sediments along the Paraguayan side of the reservoir were investigated and compared with those found in the river before impoundment. Spidergrams results show an enrichment of IE as well as a strong contribution of sedimentary material into bottom sediments.


Incompatible elements Itaipu Dam Bottom sediments Alto Parana River 


  1. 1.
    Iriondo MH, Paggi JC, Parma MJ (eds) (2007) The Middle Parana River limnology of a subtropical wetland. Springer, BerlinGoogle Scholar
  2. 2.
    Melfi A, Piccirillo E, Nardy A (1988) In The Mesozoic flood volcanism of the Parana Basin petrogenetic and geophysical aspects. In: Piccirillo EM, Melfi AJ (ed) Instituto Astronómico e Geofísico. University of San Paulo, San PauloGoogle Scholar
  3. 3.
    Fúlfaro VJ (1995) Geology of eastern Paraguay. In: Comin-Chiaramonti P, Gomes C (eds) Alkaline magmatism in central-eastern Paraguay. Universidade da Sao Paulo Editora, Sao PauloGoogle Scholar
  4. 4.
    Comin-Chiaramonti P, Cundari P, De Graaf JM, Gomez CB, Piccirillo EM (1999) Early Cretaceous magmatism in eastern Paraguay (western Paraná basin); geological, geophysical and geothermal relationships. J Geodyn 28:375–395CrossRefGoogle Scholar
  5. 5.
    Ernesto M, Marques LM, Piccirillo EM, Molina E, Ussami N, Comin-Chiaramonti P, Bellieme G (2002) Paraná Magmatic Province-Tristan da Cunha Plume System fixed vs mobile plume, petrogemetic considerations and alternative heat source. J Volcanol Geotherm Res 130:527–553Google Scholar
  6. 6.
    Comin-Chiaramonti P, Gomes CB, Cundari A, Castorina F, Censi P (2007) A review of carbonatite magmatism in the Parana, Angola, Namibia (PAN) System. Per Mineral 76(2–3):25–78Google Scholar
  7. 7.
    Bevilacqua Remor M, Sampaio SC, Damatto SR, Castilhos ZC, Stevaux JC et al (2015) Geochemistry of the Upper Parana River floodplain: Study of the Garcas Pond and Patos Pond. J Radioanal Nucl Chem. Google Scholar
  8. 8.
    ELC-electroconsul (1980) Curvas de remanso entre a hidroelectrica de Itaipu e Guaira;Niveis de inundacao I Relatorio II anexos. Technical Report to Itaipu BinacionalGoogle Scholar
  9. 9.
    Facetti JF (1982) Embalse de Itaipú: Aspectos Limnólogicos 1. Technical Repport to Itaipu Binacional, AsunciónGoogle Scholar
  10. 10.
    Scroccaro JL (1979) Estudio del Transporte de Sólidos para el Embalse de Itaipu. 1er Seminario de la Itaipú Binacional sobre Medio Ambiente. Asunción, pp 101–113Google Scholar
  11. 11.
    Facetti JF (1987) Embalse the Itaipu-Aspectos Limnológicos Partes I & II. In: 2º Seminario da Itaipú Binacional sobre Meio Ambiente. Foz do Iguazú, pp 153–186Google Scholar
  12. 12.
    Bittencourt AVL, Sanches W (1987) Contribucao ao transporte de sólidos dissolvidos en bacias tributarias do sistema do reservatorio de Itaipu. In: 2º Seminario da Itaipú Binacional sobre Meio Ambiente. Foz do Iguazú, pp 207–220Google Scholar
  13. 13.
    Ribeiro Filho RA, Petrere Junior M, Benassi SF, Pereira JMA (2011) Itaipú Reservoir limnology: eutrophication degree and the horizontal distribution of its limnological variables. Braz J Biol 71(4):889–902CrossRefGoogle Scholar
  14. 14.
    Facetti MJF, Bordas UM (2010) El Modelo de Lewis y el comportamiento térmico del Lago de Itaipu. Rev Soc Cientif Paraguay 15:137–152Google Scholar
  15. 15.
    Pagioro TA, Thomaz SM (2002) Longitudinal patterns of sedimentation in deep monomitic subtropical reservoir of Itaipu (Brazil-Paraguay). Arch Für Hydrobiologie 154(3):515–528CrossRefGoogle Scholar
  16. 16.
    Roser BP, Korsch RJ (1988) Provenance signatures of sandstone-mud stone suites determined using discriminant function analysis of major element data. Chem Geol 6:119–139CrossRefGoogle Scholar
  17. 17.
    Burnett DJ, Quirk DG (2001) Turbidite provenace in the Lower Palaeozoic Manx Group, Isle of Man: implications for the tectonic setting of Eastern Avalonia. J Geol Soc 158:913–924CrossRefGoogle Scholar
  18. 18.
    Albaréde F (2004) Geochemistry. Cambridge University Press, CambridgeGoogle Scholar
  19. 19.
    Facetti-Masulli JF, Kump P, Villanueva de Diaz Z (2003) Selected trace and minor elements in sediments of Itaipu Dam Reservoir. Czechoslov J Phys 53:209–215CrossRefGoogle Scholar
  20. 20.
    Heitz C, Lagarde G, Pape A, Tenorio D, Zarate C, Alviso R, Gonzalez D, Gonzalez V (1996) Radiosotope induced X-Ray emission—a complementary method to PIXE analysis. Nucl Instrum Methods Phys Rese B 14:93–98CrossRefGoogle Scholar
  21. 21.
    Rankama K, Sahama Th (1959) Geoquímica (trad. castellana). Aguilar, MadridGoogle Scholar
  22. 22.
    Van Espen P, Nullens H, Adams F (1977) A computer analysis of X-Ray Fluorescence spectra. Nucl Instrum Methods 142:243–250CrossRefGoogle Scholar
  23. 23.
    Kump P (1988) QAES instruction manual. J Stefan Institute, LjubljanaGoogle Scholar
  24. 24.
    Kump P, Necemer M, Kupnic P (2005) Development of the quantification procedures for in situ XRF analysis. In: In situ applications of X ray fluorescence techniques. IAEA-TECDOC-1456, pp 217–229Google Scholar
  25. 25.
    Bonin B (2004) Magmatisme et roches magmatiques. Dunod, ParisGoogle Scholar
  26. 26.
    Bangert B (2001) Thesis—Doctoral Dissertation accepted by University of Wurzburg, Departement of Earth Sciences, WurzburgGoogle Scholar
  27. 27.
    Belliene G, Comin-Chiaramonti P, Masques LS, Melfi AJ, Nardy AJ (1986) Petrogenetic aspects of acid and basaltic lavas from the Parana plateau (Brazil) Geological, Mineralogical and Petrochemical relationships. J Petrol 27(Part 4):915–944CrossRefGoogle Scholar
  28. 28.
    Piccirillo EM, Civetta M (1989) Regional variations within the Parana flood basalts (Southerns Brasil) for subconatinetnal mantle heterogeneity. Chem Geol 75:103–122CrossRefGoogle Scholar
  29. 29.
    Bellieni G, Comin- Chiaramonti P, Marques LS, Martinez LA, Melfi AJ, Nardy AJR, Piccirillo EM, Stolfa D (1986) Continental flood basalts from the central –western regions of the Paraná plateau (Paraguay and Argentina): petrology and petrogenetic aspects. Neues Jahr Miner Abh 154:111–139Google Scholar
  30. 30.
    Piccirillo EM, Raposo MIB, Melfi AJ, Bellieni G, Cordani UC, Kawashita K (1987) Bimodal fissural volcanic suites from the Parana basin (Brazil): K-Ar ages, Sr isotopes and geochemistry. Rev Geoch Bras 1:53–69Google Scholar
  31. 31.
    Comin-Chiaramonti P, Demarchi G, Girardi VAV, Princivalle F, Sinigoi S (1986) Evidence of mantle metasomatism and hetereogeneity from peridotite inclusions of northeastern Brazil and Paraguay. Earth Planet Sci Lett 77:203–217CrossRefGoogle Scholar
  32. 32.
    Menzies M, Rogers N, Tindle A, Hawkesworth C (1987) Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere-lithosphere interaction. In: Menzies MA, Hawkesworth CJ (eds) Mantle metasomatism. Academic Press, LondonGoogle Scholar
  33. 33.
    Haggerty SE, Erlank A, Grey IE (1986) Metasomatic mineral titanate complexing in the Upper Mantle. Nature 319:761–763CrossRefGoogle Scholar
  34. 34.
    Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265CrossRefGoogle Scholar
  35. 35.
    McLennan SM (2001) Trace elements composition and upper continental crust. Geochem Geophys Geosyst (G3) 2:17. Google Scholar
  36. 36.
    Dellinger M, Gaillardet J, Bouchez J, Calmels D, Louvat P, Dosseto A, Gorge C, Alanoca L et al (2015) Li isotope fractionation in the Amazon River basin controlled by the weathering regimes. Geochim Cosmochim Acta 164:71–93CrossRefGoogle Scholar
  37. 37.
    Gaillardet J, Dupre B, Allegre CJ (1998) Geochemistry of large river suspended sediments: what can we learn about present day weathering of silicates? Goldschmidt Conference Toulouse. Mineral Mag 62:489–490CrossRefGoogle Scholar
  38. 38.
    Gaillardet J, Dupre B, Louvat P, Allegre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30CrossRefGoogle Scholar
  39. 39.
    Yang S, Jung H-S, Li C (2004) Two unique weathering regimes in the Changjiang and Huanghe drainage basins: geochemical evidence from river sediments. Sed Geol 164:19–34CrossRefGoogle Scholar
  40. 40.
    Bastian L, Revel M, Bayon G, Dufour A, Vigie N (2017) Abrupt response of chemical weathering to Late Quaternary hydro-climate changes in Northeast Africa. Sci Rep 7:44231. CrossRefGoogle Scholar
  41. 41.
    Thompson RN, Gibson SA, Mitchell JG, Dicking AP et al (1998) Migrating Cretaceous-Eocene magmatism in the Serra do Mar Alkaline Province SE Brazil: Melts from Deflected Trindade Mantle Plume. J Petrol 39(6):1493–1526CrossRefGoogle Scholar
  42. 42.
    Velazquez VF, Comin- Chiaramonti P, Cundari A, Gomes CB, Riccomini C (2006) Cretaceous Na-alkaline magmatism from the Misiones Province (Paraguay): its relationships with the Paleocene Na-Alkaline Analog from Asunción and Geodynamic significance. J Geol 114:593–614CrossRefGoogle Scholar
  43. 43.
    Wilde P, Quinby-Hunt M, Erdtmann BD (1996) The whole rock cerium anomaly: potential indicator of eustatic sea level changes in shales of the anoxic facies. Sed Geol 101:43–53CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • J. F. Facetti Masulli
    • 1
    • 3
    Email author
  • Peter Kump
    • 2
  • Zulma V. de Diaz
    • 3
  • Virginia R. de González
    • 3
  1. 1.HydroconsultAsunciónParaguay
  2. 2.J.Stefan Institut LjubljanaLjubljanaSlovenia
  3. 3.National University of AsunciónSan LorenzoParaguay

Personalised recommendations