Advertisement

Extraction of actinides with heterocyclic dicarboxamides

  • M. Alyapyshev
  • V. Babain
  • L. Tkachenko
  • E. Kenf
  • I. Voronaev
  • D. Dar’in
  • P. Matveev
  • V. Petrov
  • S. Kalmykov
  • Y Ustynyuk
Article
  • 224 Downloads

Abstract

Extraction of actinides from aqueous nitric acid by three different heterocyclic dicarboxamides (2,6-pyridinedicarboxamide, 2,2′-bipyridine-6,6′-dicarboxamide and 1,10-phenanthroline-2,9-dicarboxamides) was studied. It was shown that all studied ligands extract actinides at different oxidation states (U(VI), Np(V), Pu(IV), Am(III), Cm(III)) from acidic solutions. All studied diamides extract Am(III) better than Cm(III). Et(pHexPh)ClPhen contains electron-withdrawing chlorine atoms at the positions 4 and 7 of the phenanthroline moiety (SFAm/Cm = 4–6) and possesses the highest separation factor Am(III)/Cm(III). The studied ligands possess high extraction ability to all actinides present in HLW and therefore they could be used for simultaneous extraction of actinides in the GANEX-type process.

Keywords

Actinides Diamides Extraction Separation Americium Curium GANEX-process 

Notes

Acknowledgements

This work was partially financially supported by Government of Russian Federation, Grant 074-U01, by State Corporation “ROSATOM”, contract 5/5974-D-2015, and INNOPRACTICA foundation. The authors thank Dr A.Lumpov and Mrs. M. Agafonova -Moroz for providing the UV–Vis spectra.

References

  1. 1.
    Herbst RS, Baron P, Nilsson M (2011) Standard and advanced separation: PUREX process for nuclear fuel processing. In: Nash KL, Lumetta GJ (eds) Advanced separation techniques for nuclear fuel processing and radioactive waste treatment. Woodhead Publishing Limited, Oxford, pp 141–175CrossRefGoogle Scholar
  2. 2.
    Hill C (2009) Overview of recent advances in An(III)/Ln(III) separation by solvent extraction. In: Moyer BA (ed) Ion exchange and solvent extraction. A series of advances, vol 19. CRC Press, Boca Raton, pp 119–194CrossRefGoogle Scholar
  3. 3.
    Hudson MJ, Harwood LM, Laventine DM, Lewis FW (2013) Use of soft heterocyclic N-donor ligands to separate actinides and lanthanides. Inorg Chem 52:3414–3428CrossRefGoogle Scholar
  4. 4.
    Alyapyshev MY, Babain VA, Ustynyuk YA (2016) Recovery of minor actinides from high-level wastes: modern trends. Russ Chem Rev 85:943–961CrossRefGoogle Scholar
  5. 5.
    Leoncini A, Huskens J, Verboom W (2017) Ligands for f-element extraction used in the nuclear fuel cycle. Chem Soc Rev 46:7229–7273CrossRefGoogle Scholar
  6. 6.
    Adnet J-M, Miguirditchian M, Hill C, Heres X, Lecomte M, Masson M, Brossard P, Baron P (2005) Development of new hydrometallurgical processes for actinide recovery: GANEX concept. In: Proceedings of Global-2005, Paper 119Google Scholar
  7. 7.
    Miguirditchian M, Chareyre L, Heres X, Hill C, Baron P, Masson M (2007) GANEX: adaptation of the DIAMEX-SANEX process for the group actinide separation In: Proceedings of Global-2007, Conference on advanced nuclear fuel, Boise Idaho (United States)Google Scholar
  8. 8.
    Miguirditchian M, Roussel H, Chareyre L, Baron P, Espinoux D, Calor J-N, Viallesoubranne C, Lorrain B, Masson M (2009) HA demonstration in the Atalante facility of the Ganex 2nd cycle for the grouped TRU extraction. In: Proceedings of Global-2009, Paper no 9378Google Scholar
  9. 9.
    Aneheim E, Ekberg C, Fermvik A, Foreman MRS, Retegan T, Skarnemark GA (2010) TBP/BTBP-based GANEX separation process. Part 1: feasibility. Solv Extr Ion Exch 28:437–458CrossRefGoogle Scholar
  10. 10.
    Aneheim E, Ekberg C, Fermvik A, Foreman MR, St J, Grüner B, Hajkova Z, Kvičalova M (2011) A TBP/BTBP-based GANEX separation process—Part 2: ageing, hydrolytic, and radiolytic stability. Solv Extr Ion Exch 29:157–175CrossRefGoogle Scholar
  11. 11.
    Aneheim E, Ekberg C, Foreman MRS, Löfström-Engdahl E, Mabile N (2012) Studies of a solvent for GANEX applications containing CyMe4-BTBP and DEHBA in cyclohexanone. Sep Sci Technol 47:663–669CrossRefGoogle Scholar
  12. 12.
    Aneheim E, Ekberg C, Foreman MRSJ (2012) Aqueous complexation of palladium to prevent precipitation and extraction in a group actinide extraction system. Hydrometallurgy 115–116:71–76CrossRefGoogle Scholar
  13. 13.
    Löfström-Engdahl E, Aneheim E, Ekberg C, Elfverson H, Foreman M, Skarnemark G (2014) Hexanoic acid as an alternative diluent in a GANEX process: feasibility study. J Radioanal Nucl Chem 299:1261–1266CrossRefGoogle Scholar
  14. 14.
    Halleröd J, Ekberg C, Foreman M, Löfström-Engdahl E, Aneheim E (2015) Stability of phenyl trifluoromethyl sulfone as diluent in a grouped actinide extraction process. J Radioanal Nucl Chem 304:287–291CrossRefGoogle Scholar
  15. 15.
    Bell K, Carpentier C, Carrott M, Geist A, Gregson C, Hérès X, Magnusson D, Malmbeck R, McLachlan F, Modolo G, Müllich U, Sypula M, Taylor R, Wilden A (2012) Progress towards the development of a new GANEX process. Proc Chem 7:392–397CrossRefGoogle Scholar
  16. 16.
    Carrott M, Bell K, Brown J, Geist A, Gregson C, Hères X, Maher C, Malmbeck R, Mason C, Modolo G, Müllich U, Sarsfield M, Wilden A, Taylor R (2014) Development of a new flowsheet for co-separating the transuranic actinides: the “Euro-Ganex” process. Solv Extr Ion Exch 32:447–467CrossRefGoogle Scholar
  17. 17.
    Carrott M, Maher C, Mason C, Sarsfield M, Taylor R (2016) “TRU-SANEX”: a variation on the EURO-GANEX and i-SANEX processes for heterogeneous recycling of actinides Np-Cm. Sep Sci Technol 51:2198–2213CrossRefGoogle Scholar
  18. 18.
    Alyapyshev MYu, Babain VA, Tkachenko LI (2014) Amides of heterocyclic carboxylic acids as novel extractants for high-level waste treatment. Radiochem 56:565–574CrossRefGoogle Scholar
  19. 19.
    Shimada A, Yaita T, Narita H, Tachimori S, Kimura T, Okuno K, Nakano Y (2004) Extraction of Am(III) and lanthanide(III) ions from HNO3 solutions using N,N′-dimethyl-N,N′-diphenylpyridine-2,6-dicarboxamide. Solv. Extr. Res. Dev Japan 11:1–10Google Scholar
  20. 20.
    Paulenova A, Alyapyshev MYu, Babain VA, Herbst RS, Law JD (2008) Extraction of lanthanides with diamides of dipicolinic acid from nitric acid solutions. I Sep Sci Technol 43:2606–2618CrossRefGoogle Scholar
  21. 21.
    Alyapyshev MYu, Babain VA, Tkachenko LI, Eliseev II, Didenko AV, Petrov ML (2011) Dependence of extraction properties of 2,6-dicarboxypyridine diamides on extractant structure. Solv Extr Ion Exch 29:619–636CrossRefGoogle Scholar
  22. 22.
    Ustynyuk YA, Gloriozov IP, Kalmykov SN, Mitrofanov AA, Babain VA, Alyapyshev MYu, Ustynyuk NA (2014) Pyridinedicarboxylic acid diamides as selective ligands for extraction and separation of trivalent lanthanides and actinides: DFT study. Solv Extr Ion Exch 32:508–528CrossRefGoogle Scholar
  23. 23.
    Alyapyshev MYu, Babain VA, Tkachenko LI, Paulenova A, Popova AA, Borisova NE (2014) New diamides of 2,2′-dipyridyl-6,6′-dicarboxylic acid for actinide-lanthanide separation. Solv Extr Ion Exch 32:138–152CrossRefGoogle Scholar
  24. 24.
    Xiao C-L, Wang C-Z, Yuan L-Y, Li B, He H, Wang S, Zhao Y-L, Chai Z-F, Shi W-Q (2014) Excellent selectivity for actinides with a tetradentate 2,9-diamide-1,10-phenanthroline ligand in highly acidic solution: a hard-soft donor combined strategy. Inorg Chem 53:1712–1720CrossRefGoogle Scholar
  25. 25.
    Alyapyshev M, Ashina J, Dar’in D, Kenf E, Kirsanov D, Tkachenko L, Legin A, Starova G, Babain V (2016) 1,10-Phenanthroline-2,9-dicarboxamides as ligands for separation and sensing of hazardous metals. RSC Adv 6:68642–68652Google Scholar
  26. 26.
    Dehaudt J, Williams NJ, Shkrob IA, Luo H, Dai S (2016) Selective separation of trivalent f-ions using 1,10-phenanthroline-2,9-dicarboxamide ligands in ionic liquids. Dalton Trans 45:11624–11627CrossRefGoogle Scholar
  27. 27.
    Lapka JL, Paulenova A, Alyapyshev MY, Babain VA, Law JD, Herbst RS (2010) The extraction of actinides from nitric acid solutions with diamides of dipicolinic acid. IOP Conference Series: Materials Science and Engineering vol. 9, p 012068Google Scholar
  28. 28.
    Lapka JL, Paulenova A, Alyapyshev MYu, Babain VA, Herbst RS, Law JD (2009) Extraction of uranium(VI) with diamides of dipicolinic acid from nitric acid solutions. Radiochim Acta 97:291–296CrossRefGoogle Scholar
  29. 29.
    Mowafy EA, Shalash AM, El-Nagar IM (2003) Extraction of certain radionuclides by bipicolinamides as new extractants from nitric acid medium. Ind J Chem A 42:3012–3016Google Scholar
  30. 30.
    Sun M, Yuan L-Y, Tan N, Zhao Y-L, Chai Z-F, Shi W-Q (2014) Solvent extraction of uranium(VI) by a dipicolinamide using a room-temperature ionic liquid. Radiochim Acta 102:87–92Google Scholar
  31. 31.
    Chen L, Li Y, Wang Z, Peng Z, Yang Z, Yuan L, Feng W (2015) High efficiency and selective extraction of uranyl ion by N, N′-diethyl-N, N′-bis(propoxyphenyl)-2,6-dipicolinamide. Chem J Chin Univ 36:1485–1490Google Scholar
  32. 32.
    Babain VA, Alyapyshev MY, Tkachenko LI (2013) Actinide-lanthanide separation with solvents on the base of amides of heterocyclic diacids. In: Proceedings of GLOBALGoogle Scholar
  33. 33.
    Zhang X, Yuan L, Chai Z, Shi W (2016) A new solvent system containing N,N′-diethyl-N,N′-ditolyl-2,9-diamide-1,10-phenanthroline in 1-(trifluoromethyl)-3-nitrobenzene for highly selective UO22 + extraction. Sep Purif Technol 168:232–237CrossRefGoogle Scholar
  34. 34.
    Kirsanov DO, Borisova NE, Reshetova MD, Ivanov AV, Korotkov LA, Eliseev II, Alyapyshev MYu, Spiridonov IG, Legin AV, Vlasov YuG, Babain VA (2012) Novel diamides of 2,2′-dipyridyl-6,6′-dicarboxylic acid: synthesis, coordination properties, and possibilities of use in electrochemical sensors and liquid extraction. Russ Chem Bull 61:881–890CrossRefGoogle Scholar
  35. 35.
    Borisova NE, Reshetova MD, Ustynyuk YA, Ivanov AV, Korotkov LA, Alyapyshev MY, Babain VA, Logunov MV (2014) 2,2′-Bipyridyl-6,6′-dicarboxylic acid diamides and method for production thereof. Patent RU 2530025. Published 10.10.2014Google Scholar
  36. 36.
    Borisova NE, Reshetova MD, Kostin AA, Alyapyshev MY, Babain VA, Tkachenko LI, Kenf EV (2016) Diamides of 4,7-disubstituted 1,10-phenanthroline-2,9-dicarboxylic acids, synthesis method thereof and extraction mixture based thereon. Patent RU 2601554. Published 10.11.2016Google Scholar
  37. 37.
    Leoncini A, Huskens J, Verboom W (2016) Preparation of diglycolamides via Schotten-Baumann approach and direct amidation of esters. Synlett 27:2463–2466CrossRefGoogle Scholar
  38. 38.
    Wisnubroto DS, Ikeda H, Suzuki A (1991) Solvent extraction of pentavalent neptunium with n-octyl (phenyl)-N, N- diisobutylcarbamoylmethyl-phosphine oxide. J Nucl Sci Technol 28(12):1100–1106CrossRefGoogle Scholar
  39. 39.
    Marie C, Miguirditchian M, Guillaneux D, Bisson J, Pipelier M, Dubreuil D (2011) New bitopic ligands for the group actinide separation by solvent extraction. Solv Extr Ion Exch 29:292–315CrossRefGoogle Scholar
  40. 40.
    Afsar A, Harwood LM, Hudson MJ, Westwood J, Geist A (2015) Effective separation of the actinides Am(III) and Cm(III) by electronic modulation of bis-(1,2,4-triazin-3-yl)phenanthrolines. Chem Commun 51:5860–5863CrossRefGoogle Scholar
  41. 41.
    Lange S, Wilden A, Modolo G, Sadowski F, Gerdes M, Bosbach D (2017) Direct selective extraction of trivalent americium from PUREX raffinate using a combination of CyMe4BTPhen and TEDGA—a feasibility study. Solv Extr Ion Exch 35:161–173CrossRefGoogle Scholar
  42. 42.
    Sasaki Y, Tsubata Y, Kitatsuji Y, Sugo Y, Shirasu N, Morita Y (2012) Multiplier effect on separation of Am and Cm with hydrophilic and lipophilic diamides. Procedia Chem 7:380–386CrossRefGoogle Scholar
  43. 43.
    Alyapyshev M, Babain V, Tkachenko L (2017) Various flowsheets of actinides recovery with diamides of heterocyclic dicarboxylic acids. J Radioanal Nucl Chem 312:47–58CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • M. Alyapyshev
    • 1
  • V. Babain
    • 1
  • L. Tkachenko
    • 2
  • E. Kenf
    • 2
  • I. Voronaev
    • 2
  • D. Dar’in
    • 3
  • P. Matveev
    • 4
  • V. Petrov
    • 4
  • S. Kalmykov
    • 4
  • Y Ustynyuk
    • 4
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Khlopin Radium InstituteSt. PetersburgRussia
  3. 3.Institute of ChemistrySt. Petersburg State UniversitySt. PetersburgRussia
  4. 4.Department of ChemistryM.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations