Ruthenium behavior in the reactor cooling system in case of a PWR severe accident

  • M. N. Ohnet
  • O. Leroy
  • A. S. Mamede


In the frame of severe accident topic for pressurized water reactor, the physical-chemistry of Ru fission products were experimentally studied to better understand their behavior inside the reactor coolant system in air or air/steam atmospheres. The tests consisted in vaporizing RuO2 at 1200 °C and the ruthenium oxides are transported through a controlled thermal gradient tube made of quartz or pre-oxidized stainless steel. Results show that the major part up to 95% is deposited along the tube, the remaining part being transported almost under gaseous form attributed to RuO4. Impact of carrier gas, temperature profile and nature of the tube are discussed.


Source term Severe accident Ruthenium transport Reactor cooling system Kinetics 



The authors acknowledge the OECD/NEA/CSNI hosting the STEM project and the STEM project partners: Electricité De France, Canadian National Laboratories (Canada), Teknologian tutkimuskeskus VTT (Finland), Nuclear Research Institute (Czech Republic), Gesellschaft für Anlagen−und Reaktorsicherheit (Germany), Nuclear Regulatory Commission (USA), Korea Atomic Energy Research Institute and Korea Institute for Nuclear Safety (South Korea). The authors also thank the CNRS Grenoble LEPMI for Raman spectrometry (A. Kasperski), the CNRS Villeurbanne (ISA) for the measurements of Ru deposit with the alkaline fusion method (L. Ayouni) and K. Boucault, C. Gomez, N. Monchalin, S. Souvi, L. Cantrel and C. Mun from IRSN for their technical contribution and fruitful discussion.


  1. 1.
    Auvinen A, Brillant G, Davidovich N, Dickson R, Ducros G, Dutheillet Y, Giordano P, Kunstar M, Kärkelä T, Mladin M, Pontillon Y, Séropian C, Vér N (2008) Progress on ruthenium release and transport under air ingress conditions. Nucl Eng Des 238(12):3418–3428. CrossRefGoogle Scholar
  2. 2.
    Powers DA, Kmetyk LN, Schmidt RC (1994) A review of the technical issues of air ingression during severe reactor accidents. Nuclear Regulatory Commission, Div. of Systems Research, Sandia National Labs, Albuquerque, NM, Washington, DCGoogle Scholar
  3. 3.
    Pontillon Y, Ducros G (2010) Behaviour of fission products under severe PWR accident conditions. The VERCORS experimental programme—part 3: release of low-volatile fission products and actinides. Nucl Eng Des 240(7):1867–1881. CrossRefGoogle Scholar
  4. 4.
    Pontillon Y, Ducros G, Malgouyres PP (2010) Behaviour of fission products under severe PWR accident conditions VERCORS experimental programme—part 1: general description of the programme. Nucl Eng Des 240(7):1843–1852. CrossRefGoogle Scholar
  5. 5.
    Gallais-During A, Bonnin J, Malgouyres PP, Morin S, Bernard S, Gleizes B, Pontillon Y, Hanus E, Ducros G (2014) Performance and first results of fission product release and transport provided by the VERDON facility. Nucl Eng Des 277:117–123. CrossRefGoogle Scholar
  6. 6.
    Hunt CEL, Cox DS, Liu Z, Keller NA, Barrand RD, O’Connor RF, Iglesias FC (1991) Ruthenium release in air. In: Annual International Conference—Canadian Nuclear Association, pp 290–295Google Scholar
  7. 7.
    Leggett RW (2012) The biokinetics of ruthenium in the human body. Radiat Prot Dosim 148(4):389–402. CrossRefGoogle Scholar
  8. 8.
    Snipes MB, Kanapilly GM (1983) Retention and dosimetry of 106Ru inhaled along with inert particles by fischer-344 rats. Health Phys 44(4):335–348CrossRefGoogle Scholar
  9. 9.
    Mun C, Cantrel L, Madic C (2006) Review of literature on ruthenium behavior in nuclear power plant severe accidents. Nucl Technol 156(3):332–346CrossRefGoogle Scholar
  10. 10.
    Malá H, Rulík P, Bečková V, Mihalík J, Slezáková M (2013) Particle size distribution of radioactive aerosols after the Fukushima and the Chernobyl accidents. J Environ Radioact 126:92–98. CrossRefGoogle Scholar
  11. 11.
    Mun C, Cantrel L, Madic C (2007) Study of RuO4 decomposition in dry and moist air. Radiochim Acta 95(11):643–656. CrossRefGoogle Scholar
  12. 12.
    Mun C, Cantrel L, Madic C (2008) Radiolytic oxidation of ruthenium oxide deposits. Nucl Technol 164(2):245–254CrossRefGoogle Scholar
  13. 13.
    Kajan I, Lasseson H, Persson I, Ekberg C (2016) Interaction of ruthenium tetroxide with surfaces of nuclear reactor containment building. J Nucl Sci Technol 53(9):1397–1408. CrossRefGoogle Scholar
  14. 14.
    Klein-Heßling W, Sonnenkalb M, Jacquemain D, Clément B, Raimond E, Dimmelmeier H, Azarian G, Ducros G, Journeau C, Puebla LEH, Schumm A, Miassoedov A, Kljenak I, Pascal G, Bechta S, Güntay S, Koch MK, Ivanov I, Auvinen A, Lindholm I (2014) Conclusions on severe accident research priorities. Ann Nucl Energy 74:4–11. CrossRefGoogle Scholar
  15. 15.
    Miradji F, Cousin F, Souvi S, Vallet V, Denis J, Tanchoux V, Cantrel L (2015) Modelling of Ru behaviour in oxidative accident conditions and first source term assessments. In: The 7th European Review Meeting on Severe Accident Research (ERMSAR), Marseille, France, pp 24–26Google Scholar
  16. 16.
    Vér N, Matus L, Kunstár M, Osán J, Hózer Z, Pintér A (2010) Influence of fission products on ruthenium oxidation and transport in air ingress nuclear accidents. J Nucl Mater 396(2–3):208–217. CrossRefGoogle Scholar
  17. 17.
    Vér N, Matus L, Pintér A, Osán J, Hózer Z (2012) Effects of different surfaces on the transport and deposition of ruthenium oxides in high temperature air. J Nucl Mater 420(1):297–306. CrossRefGoogle Scholar
  18. 18.
    Backman U, Lipponen M, Auvinen A, Tapper U, Zilliacus R, Jokiniemi JK (2005) On the transport and speciation of ruthenium in high temperature oxidising conditions. Radiochim Acta 93(5):297–304. CrossRefGoogle Scholar
  19. 19.
    Kärkelä T, Backman U, Auvinen A, Zilliacus R, Lipponen M, Kekki T, Tapper U, Jokiniemi J (2007) Experiments on the behaviour of ruthenium in air ingress accidents—final report. SARNET-ST-P58, VTT Processes, Espoo, FinlandGoogle Scholar
  20. 20.
    Kärkelä T, Vér N, Haste T, Davidovich N, Pyykönen J, Cantrel L (2014) Transport of ruthenium in primary circuit conditions during a severe NPP accident. Ann Nucl Energy 74:173–183. CrossRefGoogle Scholar
  21. 21.
    Kajan I, Kärkelä T, Tapper U, Johansson LS, Gouëllo M, Ramebäck H, Holmgren S, Auvinen A, Ekberg C (2017) Impact of Ag and NOx compounds on the transport of ruthenium in the primary circuit of nuclear power plant in a severe accident. Ann Nucl Energy 100:9–19. CrossRefGoogle Scholar
  22. 22.
    Kärkelä T, Kajan I, Tapper U, Auvinen A, Ekberg C (2017) Ruthenium transport in an RCS with airborne CsI. Prog Nucl Energy 99:38–48. CrossRefGoogle Scholar
  23. 23.
    Kajan I, Kärkelä T, Auvinen A, Ekberg C (2017) Effect of nitrogen compounds on transport of ruthenium through the RCS. J Radioanal Nucl Chem 311(3):2097–2109. CrossRefGoogle Scholar
  24. 24.
    START Ruthenium tests are part of the OECD/NEA Source Term Evaluation and Mitigation (STEM) project. (
  25. 25.
    Chatelard P, Belon S, Bosland L, Carénini L, Coindreau O, Cousin F, Marchetto C, Nowack H, Piar L, Chailan L (2016) Main modelling features of the ASTEC V2.1 major version. Ann Nucl Energy 93:83–93. CrossRefGoogle Scholar
  26. 26.
    Larsen RP, Ross LE (1959) Spectrophotometric determination of ruthenium. Anal Chem 31(2):176–178. CrossRefGoogle Scholar
  27. 27.
    Morgan DJ (2015) Resolving ruthenium: XPS studies of common ruthenium materials. Surf Interface Anal 47(11):1072–1079. CrossRefGoogle Scholar
  28. 28.
    Huang YS, Pollak FH (1982) Raman investigation of rutile RuO2. Solid State Commun 43(12):921–924. CrossRefGoogle Scholar
  29. 29.
    Musić S, Popovi S, Maljkovi M, Furi K, Gajovi A (2002) Influence of synthesis procedure on the formation of RuO2. Mater Lett 56(5):806–811. CrossRefGoogle Scholar
  30. 30.
    Griffith WP (1968) Raman spectra of ruthenium tetroxide and related species. J Chem Soc A. Google Scholar
  31. 31.
    McDowell RS, Asprey LB, Hoskins LC (1972) Vibrational spectrum and force field of ruthenium tetroxide. J Chem Phys 56(11):5712–5721. CrossRefGoogle Scholar
  32. 32.
    Chan HYH, Takoudis CG, Weaver MJ (1997) High-pressure oxidation of ruthenium as probed by surface-enhanced raman and X-ray photoelectron spectroscopies. J Catal 172(2):336–345. CrossRefGoogle Scholar
  33. 33.
    Bhaskar S, Dobal PS, Majumder SB, Katiyar RS (2001) X-ray photoelectron spectroscopy and micro-Raman analysis of conductive RuO2 thin films. J Appl Phys 89(5):2987–2992. CrossRefGoogle Scholar
  34. 34.
    Kim KS, Winograd N (1974) X-Ray photoelectron spectroscopic studies of ruthenium-oxygen surfaces. J Catal 35(1):66–72. CrossRefGoogle Scholar
  35. 35.
    Mun C, Ehrhardt JJ, Lambert J, Madic C (2007) XPS investigations of ruthenium deposited onto representative inner surfaces of nuclear reactor containment buildings. Appl Surf Sci 253(18):7613–7621. CrossRefGoogle Scholar
  36. 36.
    Mun C, Bosland L, Cantrel L, Colombani J, Leroy O, Ohnet MN, Albiol T (2015) OECD STEM Project and its follow-up STEM2. In: International Iodine Workshop, Marseille (France)Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RESCadaracheFrance
  2. 2.Univ. Lille, CNRS, ENSCL, Centrale Lille, Univ. Artois, UMR 8181– UCCS – Unité de Catalyse et Chimie du SolideLilleFrance

Personalised recommendations