Utilization of (p, 4n) reaction for 86Zr production with medium energy protons and development of a 86Zr → 86Y radionuclide generator

  • Ayagoz Baimukhanova
  • Valery RadchenkoEmail author
  • Ján Kozempel
  • Atanaska Marinova
  • Victoria Brown
  • Vasily Karandashev
  • Dimitr Karaivanov
  • Paul Schaffer
  • Dmitry Filosofov


Utilization of (p, 4n) reaction channel for the production of medical radionuclides became very attractive with commercial availability of medium energy cyclotrons. Significantly higher yields and radionuclidic purity may open new perspectives for several novel and some of the radionuclides previously have not been considered due to production difficulties. In present work, we show the proof-of-principle study on the production of 86Y for Positron Emission Tomography imaging via radionuclide generator 86Zr → 86Y. Production suitability of 86Zr from natural yttrium target and radiochemical separation strategies were tested. In addition, two generator systems were proposed and evaluated.


Medium energy protons Yttrium target 86Zr → 86Y generator Ion exchange ZR resin 



We thank the Phasotron team for performing the yttrium targets irradiations. We also thank to Dr. Steffen Happel from Triskem International for providing samples of ZR-resin.


Financial support of this project was provided by the Russian Foundation for Fundamental Research Grants (RFBR 15-53-12372), by the Program for graduate and postgraduate students in the framework of collaboration between JINR laboratories, JINR Member States and the Czech scientific institutions, by the joint Czech Republic—JINR representatives committee Grant No.: 03-2-1100-2010/2018 and Health Research Agency of the Czech Republic and the Ministry of Education Youth and Sports of the Czech Republic and the EU, grant No’s.: NV16-30544A and CAP-CZ.02.1.01/0.0/0.0/15_003/0000464. TRIUMF receives funding via a contribution agreement with the National Research Council of Canada.


  1. 1.
    Rosch F, Baum RP (2011) Generator-based PET radiopharmaceuticals for molecular imaging of tumors: on the way to THERANOSTICS. Dalt Trans 40:6104–6111. CrossRefGoogle Scholar
  2. 2.
    Penet MF, Chen Z, Kakkad S et al (2012) Theranostic imaging of cancer. Eur J Radiol 81:S124–S126. CrossRefGoogle Scholar
  3. 3.
    Herrmann K, Larson SM, Weber WA (2017) Theranostic concepts: more than just a fashion trend—introduction and overview. J Nucl Med 58:1S–2S. CrossRefGoogle Scholar
  4. 4.
    Nagarajah J, Janssen M, Hetkamp P, Jentzen W (2017) Iodine symporter targeting with 124I/131I theranostics. J Nucl Med 58:34S–38S. CrossRefGoogle Scholar
  5. 5.
    Ahn BC (2012) Sodium iodide symporter for nuclear molecular imaging and gene therapy: from bedside to bench and back. Theranostics 2:392–402. CrossRefGoogle Scholar
  6. 6.
    Muller C, Bunka M, Haller S et al (2014) Promising prospects for 44Sc-/47Sc-based theragnostics: application of 47Sc for radionuclide tumor therapy in mice. J Nucl Med 55:1658–1664. CrossRefGoogle Scholar
  7. 7.
    Herzog H, Rösch F, Stocklin G et al (1993) Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. J Nucl Med 34:2222–2226Google Scholar
  8. 8.
    Nayak TK, Brechbiel MW (2011) 86Y based PET radiopharmaceuticals: radiochemistry and biological applications. Med Chem (Los Angeles) 7:380–388. Google Scholar
  9. 9.
    Müller C, Reber J, Haller S et al (2014) Folate receptor targeted alpha-therapy using terbium-149. Pharmaceuticals 7:353–365. CrossRefGoogle Scholar
  10. 10.
    Müller C, Vermeulen C, Köster U et al (2017) Alpha-PET with terbium-149: evidence and perspectives for radiotheragnostics. EJNMMI Radiopharm Chem 1:5. CrossRefGoogle Scholar
  11. 11.
    International Atomic Energy Agency (2009) Therapeutic radionuclide generators: 90Sr/90Y and 188W/188Re generators. International Atomic Energy Agency, Vienna Technical report series No. 470, 233 ppGoogle Scholar
  12. 12.
    Kettern K, Linse KH, Spellerberg S et al (2002) Radiochemical studies relevant to the production of 86Y and 88Y at a small-sized cyclotron. Radiochim Acta 90:845–849. CrossRefGoogle Scholar
  13. 13.
    Kandil SA, Scholten B, Hassan KF et al (2009) A comparative study on the separation of radioyttrium from Sr- and Rb-targets via ion-exchange and solvent extraction techniques, with special reference to the production of no-carrier-added 86Y, 87Y and 88Y using a cyclot. J Radioanal Nucl Chem 279:823–832. CrossRefGoogle Scholar
  14. 14.
    Reischl G, Rösch F, Machulla HJ (2002) Electrochemical separation and purification of yttrium-86. Radiochim Acta 90:225–228. CrossRefGoogle Scholar
  15. 15.
    Yoo J, Tang L, Perkins TA et al (2005) Preparation of high specific activity 86Y using a small biomedical cyclotron. Nucl Med Biol 32:891–897. CrossRefGoogle Scholar
  16. 16.
    Lukić D, Tamburella C, Buchegger F et al (2009) High efficiency production and purification of 86Y based on electrochemical separation. Appl Radiat Isot 67:523–529. CrossRefGoogle Scholar
  17. 17.
    Rösch F, Qaim SM, Stöcklin G (1993) Production of the positron emitting radioisotope 86Y for nuclear medical application. Appl Radiat Isot 44:677–681. CrossRefGoogle Scholar
  18. 18.
    Sadeghi M, Aboudzadeh M, Zali A, Zeinali B (2009) 86Y production via 86Sr(p, n) for PET imaging at a cyclotron. Appl Radiat Isot 67:1392–1396. CrossRefGoogle Scholar
  19. 19.
    Rösch F, Herzog H, Qaim SM (2017) The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals 10:1–28. CrossRefGoogle Scholar
  20. 20.
    International Atomic Energy Agency (2009) Cyclotron produced radionuclides: physical characteristics and production methods. International Atomic Energy Agency, Vienna Technical report series No. 468, 266 ppGoogle Scholar
  21. 21.
    Filosofov DV, Loktionova NS, Rösch F (2010) A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals. Radiochim Acta 98:149–156. CrossRefGoogle Scholar
  22. 22.
    Dirks C, Happel S, Bombard A, Maudoux N (2015) On the characterisation of an hydroxamate based extraction chromatographic resin. In: 61st RRMC, IowaGoogle Scholar
  23. 23.
    Uddin MS, Hagiwara M, Baba M et al (2005) Experimental studies on excitation functions of the proton-induced activation reactions on yttrium. Appl Radiat Isot 63:367–374. CrossRefGoogle Scholar
  24. 24.
    Yang S-C, Song T-Y, Lee Y-O, Kim G (2017) Production cross sections of proton-induced reactions on yttrium. Nucl Instrum Methods Phys Res Sect B 398:1–8. CrossRefGoogle Scholar
  25. 25.
    Firestone RB, Shirley VS (1998) Table of isotopes. Wiley, New YorkGoogle Scholar
  26. 26.
    Marhol M (1982) Ion exchangers in analytical chemistry. Academia, PragueGoogle Scholar
  27. 27.
    Horwitz EP, Chiarizia R, Dietz L (1992) A novel strontium-selective extraction chromatographic resin. Solvent Extr Ion Exch 10:212–336. Google Scholar
  28. 28.
    Marinov GM, Marinova AP, Medvedev DV et al (2016) Determination of distribution coefficients (Kd) of various radionuclides on UTEVA resin. Radiochim Acta 104:735–742. CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Ayagoz Baimukhanova
    • 1
    • 2
  • Valery Radchenko
    • 3
    Email author
  • Ján Kozempel
    • 4
  • Atanaska Marinova
    • 1
  • Victoria Brown
    • 3
  • Vasily Karandashev
    • 5
  • Dimitr Karaivanov
    • 1
    • 6
  • Paul Schaffer
    • 3
  • Dmitry Filosofov
    • 1
  1. 1.DLNPJoint Institute for Nuclear ResearchDubnaRussian Federation
  2. 2.Institute of Nuclear PhysicsAlmatyKazakhstan
  3. 3.Life Sciences DivisionTRIUMFVancouverCanada
  4. 4.Department of Nuclear ChemistryCzech Technical University in PraguePragueCzech Republic
  5. 5.Institute of Microelectronics Technology and High-Purity MaterialsChernogolovkaRussian Federation
  6. 6.Institute for Nuclear Research and Nuclear EnergySofiaBulgaria

Personalised recommendations