Skip to main content
Log in

Potentially toxic elements downward mobility in an impounded vehicle scrapyard

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In Brazil impounded vehicle scrapyards (IVS) are often overcrowded and may pose a source of potentially toxic elements (PTEs). In this study, PTEs content in soil cores and groundwater of an IVS located at a municipality of the São Paulo metropolitan region was assessed. INAA, XRF and ICP-MS were the analytical techniques employed. PTEs results and statistical approaches indicated that As, Pb, Ni, Cu and Nb are mostly anthropic. Pb, Cu, Ni and Nb mass fraction increased with depth indicating some downward mobility. Arsenic may represent a moderate to very high potential ecological risk. PTEs groundwater levels were bellow drinking water recommendation limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. IBGE (2010) Instituto Brasileiro de Geografia e Estatística (Brazilian Institute of Geography and Statistics). Censo Demográfico 2010 http://7a12.ibge.gov.br/vamos-conhecer-o-brasil/nosso-povo/caracteristicas-da-populacao.html (accessed 21 Jul 17)

  2. IBGE (2016) Instituto Brasileiro de Geografia e Estatística (Brazilian Institute of Geography and Statistics). Cidades http://cidades.ibge.gov.br/xtras/perfil.php?codmun=3550308 (accessed 21 Jul 17)

  3. Soriano E et al (2016) Water crisis in São Paulo evaluated under the disaster’s point of view. Ambiente Soc 19(1):21–42

    Article  Google Scholar 

  4. Nwachukwu MA, Feng H, Alinnor J (2011) Trace metal deposition in soil from auto-mechanic village to urban residential areas in Owerri, Nigeria. Proc Environ Sci 4:310–322

    Article  CAS  Google Scholar 

  5. Doumett S, Lamperi L, Checchini L, Azzarello E, Mugnai S, Mancuso S, Petruzzelli G, Del Bubba M (2008) Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: influence of different complexing agents. Chemosphere 72:1481–1490

    Article  CAS  Google Scholar 

  6. Chokor AA (2016) Soil profile distribution of heavy metals in automobile workshops in Sapele, Nigeria. Int J Basic Sci Technol 2(1):30–38

    Google Scholar 

  7. Lange CN, Figueiredo AMG, Enzweiler J, Castro L (2017) Trace elements status in the terrain of an impounded vehicle scrapyard. Radioanal Nucl Chem 311(2):1323–1332

    Article  CAS  Google Scholar 

  8. Werkenthin M, Kluge B, Wessolek G (2014) Metals in European roadside soils and soil solution—a review. Environ Pollut 189:98–110

    Article  CAS  Google Scholar 

  9. Teng Y, Feng D, Wu J, Zuo R, Song L, Wang J (2015) Distribution, bioavailability, and potential ecological risk of Cu, Pb and Zn in soil in a potential groundwater source area. Environ Monit Assess 187:293–306

    Article  Google Scholar 

  10. Imperato M, Adamo P, Arienzo M, Stanzione D, Violante P (2003) Spatial distribution of heavy metals in urban soils of Naples city (Italy). Eviron Pollut 124:247–256

    Article  CAS  Google Scholar 

  11. Almeida FFM (1958) O Planalto Paulistano. In: Azevedo A (ed) A cidade de São Paulo. São Paulo, Associação dos Geógrafos Brasileiros, pp 113–167

    Google Scholar 

  12. Riccomini C, Coimbra AM (1992) Geologia da Bacia Sedimentar de São Paulo. In: Negro A, Ferreira AA, Alonso UR, Luz PAC (eds) Solos da cidade de São Paulo. ABMS-ABEF, São Paulo, pp 37–94

    Google Scholar 

  13. Crozera EH (2001) Identificação das áreas contaminadas no município de Ribeirão Pires—São Paulo. 205. Tese (Doutorado)—Instituto de Geociências, Universidade de São Paulo, São Paulo

  14. Rocha G (ed) (2005) Mapa de Águas Subterrâneas do Estado de São Paulo, escala 1:1,000,000. CD-ROOM, São Paulo

    Google Scholar 

  15. CETESB (2016a) Companhia Ambiental do Estado de São Paulo. Relatório de qualidade de águas subterrâneas no Estado período de 1998–2000 http://aguassubterraneas.cetesb.sp.gov.br/wp-content/uploads/sites/13/2013/11/1998-2000-Relatorio-de-Qualidade-das-aguas-subterraneas.pdf (accessed 03 Mar 2016)

  16. CETESB (2016b) Companhia Ambiental do Estado de São Paulo. Relatório de qualidade de águas subterrâneas no Estado período de 2004–2006 http://aguassubterraneas.cetesb.sp.gov.br/wp-content/uploads/sites/42/2013/11/qual_precambriano_2004_2006.pdf (accessed 03 Mar 2016)

  17. Camargo OA, Moniz AC, Jorge JA, Valadares JMAS (2009) Métodos de Analise Química, Mineralógica e Física de Solos do Instituto Agronômico de Campinas. Campinas, Instituto Agronômico 77 (Boletim técnico, 106, Edição revista e atualizada)

  18. Zambello F, Enzweiler J (2002) Multi-element analysis of soils and sediments by wavelength-dispersive X-ray fluorescence spectrometry. J Soils Sediment 2:29–36

    Article  CAS  Google Scholar 

  19. APHA (1985) Standard methods for the examination of water and wastewater, 12th edn. American Public Health Assoc, New York

    Google Scholar 

  20. Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. GeoJournal 2:108–118

    Google Scholar 

  21. Håkanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  22. Taylor SR, McLennan SH (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  23. Xu ZQ, Ni SJ, Tuo XG, Zhang CJ (2008) Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index. Environ Sci Technol 31(2):112–115

    CAS  Google Scholar 

  24. Statsoft (2005) Statistica 7.0 software. Tucksa

  25. Alloway BJ (1995) Heavy metals in soils, 2nd edn. Blackie Academic & Professional, Great Britain

    Book  Google Scholar 

  26. Guagliardi I, Cicchella D, de Rosa R, Ricca N, Buttafuoco N (2016) Geochemical souces of vanadium in soils: evidences in a Southern Italy área. J Geochem Explor. https://doi.org/10.1016/j.gexplo.2016.11.017

    Google Scholar 

  27. dos Santos-Araujo SN, Alleoni LRF (2016) Concentrations of potentially toxic elements in soils and vegetables from the macroregion of São Paulo, Brazil: availability for plant uptake. Environ Monit Assess 188:92

    Article  Google Scholar 

  28. Oloye FF, Ololade IA, Oluwole OD, Bello MO, Olyuede OP, Ololade O (2014) Fate and potential mobility of arsenic (As) in the soil of mechanic workshops. Environ Pollut 3(4):70–78

    Article  CAS  Google Scholar 

  29. Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114(3):313–324

    Article  CAS  Google Scholar 

  30. Duong TTT, Lee BK (2001) Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J Environ Manage 92:554–562

    Article  Google Scholar 

  31. CBMM (2017) Uses & End users of niobum http://www.cbmm.com.br/en/Pages/Uses-EndUsers-Niobium.aspx (accessed 23 Aug 17)

  32. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58(1):201–235

    Article  CAS  Google Scholar 

  33. US EPA (2001) National primary drinking water regulations: arsenic and clarifications to compliance and new source contaminants monitoring. In: Final Rule, Code of Federal Regulations 141–142

  34. McMahon P, Chapelle F (2007) Redox processes and water quality of selected principal aquifer systems. Ground Water 46:259–271

    Article  Google Scholar 

  35. Guo H, Zhang B, Wang G, Shen Z (2010) Geochemical controls on arsenic and rare earth elements approximately along a groundwaterflow path in the shallow aquifer of the Hetao Basin, Inner Mongolia. Chem Geol 270:112–117

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Ribeirão Pires Municipality for permission to carry out this project and to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), for financial support. The author C.N. Lange thanks for the fellowship from the Brazilian Nuclear Energy Comission (CNEN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila Neves Lange.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lange, C.N., Figueiredo, A.M.G., Enzweiler, J. et al. Potentially toxic elements downward mobility in an impounded vehicle scrapyard. J Radioanal Nucl Chem 316, 819–830 (2018). https://doi.org/10.1007/s10967-018-5729-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5729-0

Keywords

Navigation