Advertisement

Determination of elemental concentrations in biological and geological samples using PGNAA facility at the Dalat research reactor

  • Nguyen Canh HaiEmail author
  • Nguyen Nhi Dien
  • Vuong Huu Tan
  • Tran Tuan Anh
  • Pham Ngoc Son
  • Ho Huu Thang
Article
  • 27 Downloads

Abstract

This article presents the results of the determination of element concentrations in biological and geological samples by using the Prompt Gamma Neutron Activation Analysis (PGNAA) facility that was installed at horizontal channel No. 4 of the Dalat research reactor. The biological standard sample Bovine Liver NBS 1577a and environmental standard sample Coal Fly Ash NBS 1633a were analyzed to verify the analytical ability of the facility. After that, the concentrations of N, K, Cl, Fe, Ca, Mn and B in biological samples and concentrations of K, Al, Si, Fe, Ca, Mn, Gd, Sm, Ti, and B in geological samples were determined in the framework of quality assurance and quality control programme at the Dalat Nuclear Research Institute. The analytical results indicated that this PGNAA facility can be used as a suitable instrumental tool to study in the fields of environment, biology and geology.

Keywords

PGNAA Biological samples Environmental samples Dalat research reactor 

Notes

Acknowledgements

The study was completed at the laboratories of the Center of Nuclear Physics and Electronics, DNRI and supported by the Ministry of Science and Technology of Vietnam.

Compliance with ethical standards

Conflicts of interest

All authors have no conflicts of interest to declare.

References

  1. 1.
    Perry DL, Firestone RB, Molnar GL, Revay Zs, Kasztovszky Zs, Gatti RC, Wilde P (2002) Neutron-induced prompt gamma activation analysis (PGAA) of metals and non-metals in ocean floor geothermal vent-generated samples. J Anal Atom Spectrom 17:32–37CrossRefGoogle Scholar
  2. 2.
    Rossbach M, Hiep Nguyen Trong (1992) Prompt gamma cold neutron activation analysis applied to biological materials. Fresenius J Anal Chem 344:59–62CrossRefGoogle Scholar
  3. 3.
    Spychala M, Michaelis W, Fanger HU (1987) Prompt gamma-ray neutron activation analysis for multi-element determination in sediment samples. J Radioanal Nucl Chem 112:331–339CrossRefGoogle Scholar
  4. 4.
    Kasztovszky Zs, Revay Zs, Belgya T, Molnar GL (2000) Nondestructive analysis of metals by PGAA at the Budapest Research Reactor. J Radioanal Nucl Chem 244:379–382CrossRefGoogle Scholar
  5. 5.
    Becker DA, Anderson DL, Lindstrom RM, Greeberg RR, Garrity KM, Mackey EA (1994) Use of INAA, PGAA, and RNAA to determine 30 elements for certification of an SRM: tomato leaves, 1573a. J Radioanal Nucl Chem 179:149–154CrossRefGoogle Scholar
  6. 6.
    Lindstrom RM (1998) Reference material certification by prompt gamma activation analysis. Fresenius J Anal Chem 360:322–324CrossRefGoogle Scholar
  7. 7.
    Yonezawa C, Matsue H, Hoshi M (1997) Multi-element analysis of environmental samples by cold and thermal guided neutron induced prompt gamma ray measurement. J Radioanal Nucl Chem 215:81–85CrossRefGoogle Scholar
  8. 8.
    Anderson DL, Cunningham WC, Mackey EA (1990) Determination of boron in food and biological reference material by neutron capture prompt-gamma activation. Fresenius J Anal Chem 338:554–558CrossRefGoogle Scholar
  9. 9.
    Vogt JR, Schlegel SC (1985) Elemental determinations in NBS 1633A fly ash standard reference material using INAA and PGNAA. J Radioanal Nucl Chem 88(2):379–387CrossRefGoogle Scholar
  10. 10.
    Sudarshan K, Tripathi R, Nair AGC, Acharya R, Reddy AVG, Goswami A (2005) Analysis of reference materials by prompt γ-ray neutron activation analysis and evaluation of sample-dependent background. Anal Chim Acta 535:309–315CrossRefGoogle Scholar
  11. 11.
    Nair AGC, Acharya R, Sudarshan K, Gangotra S, Reddy AVG, Manohar SB, Goswami A (2003) Development of an internal monostandard instrumental neutron activation analysis method based on in situ detection efficiency for analysis of large and nonstandard geometry samples. Anal Chem 75:4868–4874CrossRefGoogle Scholar
  12. 12.
    Acharya R, Pujari PK (2018) Potential of conventional and internal monostandard NAA and PGNAA and PIGE in forensic sciences: an overview. Forensic Chem.  https://doi.org/10.1016/j.forc.2018.01.002 Google Scholar
  13. 13.
    Acharya R, Swain KK, Reddy AVR (2010) Analysis of SMELS and reference materials for validation of k 0-based internal monostandard NAA method using in situ detection efficiency. J Nucl Instrum Methods Phys Res A 622:411–414CrossRefGoogle Scholar
  14. 14.
    Nair AGC, Sudarshan K, Raje N, Reddy AVG, Manohar SB, Goswami A (2004) Analysis of alloys by prompr gamma-ray neutron activation. J Nucl Instrum Methods Phys Res A 516:143–148CrossRefGoogle Scholar
  15. 15.
    Chau LN, Hiep NT, Ha VT, Hai NC (1992) Uses of PGAA at the Dalat reactor. J Radioanal Nucl Chem Lett 165:351–362CrossRefGoogle Scholar
  16. 16.
    Higgins MD, Truscott MG, Shaw DM, Bergeron M, Buffet GH, Copley JRD, Prestwich WV (1984) Use and development of low and medium flux research reactors. In: von der Hardt P (ed) Chapter: prompt-gamma neutron activation analysis at mcmaster nuclear reactorGoogle Scholar
  17. 17.
    Lombard SM, Isenhour TL, Heintz PH, Woodruff GL, Wilson WE (1968) Neutron-capture gamma-ray activation analysis: design of apparatus for trace analysis. Int J Appl Radiat Isot 19:15–22CrossRefGoogle Scholar
  18. 18.
    Lindstrom RM, Zeisler R, Vincernt DH, Greenberg RR, Stone CA, Anderson DL, Clark DD, Macley EA (1993) Neutron capture prompt gamma-ray activation analysis at the NIST cold neutron research facility. J Radioanal Nucl Chem 167:121–126CrossRefGoogle Scholar
  19. 19.
    Matsumoto T, Aizawa O (1990) Prompt gamma-ray neutron activation analysis of boron-10 in biological material. Appl Radiat Isot 41:897–903CrossRefGoogle Scholar
  20. 20.
    Molnár GL (ed) (2004) Handbook of prompt gamma activation analysis with neutron beams. Kluwer, DordrechtGoogle Scholar
  21. 21.
    Nuclear Data Services, International Atomic Energy Agency (2003) http://www.nds.iaea.or.at/pgaa/data/gamdoc.pdf. Accessed 20 June 2018
  22. 22.
    Lindstrom RL, Fleming RF, Paul RL, Mackey MA (1992) Proceedings of the international k 0 users workshop-gent. In: De Corte F (ed) Gent, Belgium, p 121Google Scholar
  23. 23.
    Matsue H, Yonezawa Ch (2003) Neutron spectrum correction of k 0-factors for k 0-based neutron-induced prompt gamma-ray analysis. J Radioanal Nucl Chem 255:125–129CrossRefGoogle Scholar
  24. 24.
    Revay Zs, Kennedy G (2012) Application of the k 0 method in neutron activation analysia and in prompt gamma activation analysis. Radiochim Acta 100:687–698CrossRefGoogle Scholar
  25. 25.
    Debertin K, Helmer RG (1998) Gamma and X ray spectrometry with semiconductor detectors. North- Holland Amsterdam, OxfordGoogle Scholar
  26. 26.
    Fazekas B, Revay Z, Ostor J, Belgya T, Molnar G, Simonits A (1999) A new method for determination of gamma-ray spectrometer. J Nucl Instrum Methods Phys Res A 422:469–473CrossRefGoogle Scholar
  27. 27.
    https://www-s.nist.gov/. Accessed 20 June 2018

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Nuclear Research InstituteDalatVietnam
  2. 2.Vietnam Atomic Energy SocietyCau Giay, HanoiVietnam

Personalised recommendations