Advertisement

Radiosynthesis of β-phenylethylamine derivatives for cardiac sympathetic nervous PET imaging

  • Yulin He
  • Xiaojun Zhang
  • Jian Liu
  • Jinming ZhangEmail author
  • Xuemei Wang
Article
  • 11 Downloads

Abstract

β-Phenylethylamine is one of the core structure for synthesis of cardiac imaging agents. 11C-MDA is a β-phenylethylamine-based agent, which showed potential imaging performance. To further explore the potentials of the β-phenylethylamine derivatives, 11C-MPEA, 11C-m-MTyr and 11C-p-MTyr were synthesized. The three agents were stable in vitro. The radioactivity uptake of them in myocardium was similar to that in muscle. 11C-p-MTyr PET/CT imaging in New Zealand white rabbits showed a blurred left ventricular image along with a reduced radioactivity uptake. These results suggested the newly synthesized β-phenylethylamine derivatives, unlike 11C-MDA, may not be suitable as the cardiac PET imaging agents.

Keywords

β-Phenylethylamine Carbon-11 labeling Cardiac sympathetic nervous Positron imaging agent 

Notes

Acknowledgements

This work was supported in part by a grant from National Natural Science Foundation of China (81660295) and Natural Science Foundation of Inner Mongolia (2016MS(LH)0812).

Author contributions

YH wrote the paper and performed the experiments. XZ performed the experiments for drug synthesis. JL performed the experiments for biological distribution experiment. JZ conceived and designed the experiments. XW analyzed the data of PET imaging.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sogbein OO, Pelletier-Galarneau M, Schindler TH, Wei LH, Wells RG, Ruddy TD (2014) New SPECT and PET radiopharmaceuticals for imaging cardiovascular disease. Biomed Res Int 2014:942960CrossRefGoogle Scholar
  2. 2.
    Manabe Y, Inui Y, Toyama H, Kosaka K (2017) 123I-metaiodobenzylguanidine myocardial scintigraphy with early images alone is useful for the differential diagnosis of dementia with Lewy bodies. Psychiatry Res 261:75–79CrossRefGoogle Scholar
  3. 3.
    Thackeray JT, Bengel FM (2013) Assessment of cardiac autonomic neuronal function using PET imaging. J Nucl Cardiol 1:150–165CrossRefGoogle Scholar
  4. 4.
    Ekas RD Jr, Steenberg ML, Lokhandwala MF (1983) Increased norepinephrine release during sympathetic nerve stimulation and its inhibition by adenosine in the isolated perfused kidney of spontaneously hypertensive rats. Clin Exp Hypertens 1:41–48Google Scholar
  5. 5.
    Fuder H, Siebenborn R, Muscholl E (1982) Nicotine receptors do not modulate the 3H-Noradrenaline release from the isolated rat heart evoked by sympathetic nerve stimulation. Naunyn-Schmiedeberg’s Arch Pharmacol 4:301–307CrossRefGoogle Scholar
  6. 6.
    Raffel DM, Wieland DM (2001) Assessment of cardiac sympathetic nerve integrity with positron emission tomography. Nucl Med Biol 5:541–559CrossRefGoogle Scholar
  7. 7.
    Vega A, Luther JA, Birren SJ, Morales MA (2010) Segregation of the classical transmitters norepinephrine and acetylcholine and the neuropeptide Y in sympathetic neurons: modulation by ciliary neurotrophic factor or prolonged growth in culture. Dev Neurobiol 70(14):913–928CrossRefGoogle Scholar
  8. 8.
    Werner RA, Maya Y, Rischpler C, Javadi MS, Fukushima K, Lapa C, Herrmann K, Higuchi T (2016) Sympathetic nerve damage and restoration after ischemia-reperfusion injury as assessed by 11C-hydroxyephedrine. Eur J Nucl Med Mol Imaging 2:312–318CrossRefGoogle Scholar
  9. 9.
    Rijnierse MT, Allaart CP, de Haan S, Harms HJ, Huisman MC, Wu L, Beek AM, Lammertsma AA, van Rossum AC, Knaapen P (2015) Sympathetic denervation is associated with microvascular dysfunction in non-infarcted myocardium in patients with cardiomyopathy. Eur Heart J Cardiovasc Imaging 7:788–798CrossRefGoogle Scholar
  10. 10.
    Bravo PE, Lautamäki R, Carter D, Holt DP, Nekolla SG, Dannals RF, Russell SD, Bengel FM (2015) Mechanistic insights into sympathetic neuronal regeneration: multitracer molecular imaging of catecholamine handling after cardiac transplantation. Circ Cardiovasc Imaging 8:e003507CrossRefGoogle Scholar
  11. 11.
    Eskola O, Grönroos T, Bergman J, Haaparanta M, Marjamäki P, Lehikoinen P, Forsback S, Langer O, Hinnen F, Dollé F, Halldin C, Solin O (2004) A novel electrophilic synthesis and evaluation of medium specific radioactivity (1R,2S)-4-18F-fluorometaraminol, a tracer for the assessment of cardiac sympathetic nerve integrity with PET. Nucl Med Biol 1:103–110CrossRefGoogle Scholar
  12. 12.
    Nguyen NT, Degrado TR, Chakraborty P, Wieland DM, Schwaiger M (1997) Myocardial kinetics of carbon-11-epinephrine in the isolated working rat heart. J Nucl Med 5:780–785Google Scholar
  13. 13.
    Neumann KD, Qin L, Vāvere AL, Shen B, Miao Z, Chin FT, Shulkin BL, Snyder SE, DiMagno SG (2016) Efficient automated syntheses of high specific activity 6-18F-fluorodopamine using a diaryliodonium salt precursor. J Label Compd Radiopharm 1:30–34CrossRefGoogle Scholar
  14. 14.
    Boschi S, Lodi F, Boschi L, Nanni C, Chondrogiannis S, Colletti PM, Rubello D, Fanti S (2015) 11C-meta-hydroxyephedrine: a promising PET radiopharmaceutical for imaging the sympathetic nervous system. Clin Nucl Med 2:e96–e103CrossRefGoogle Scholar
  15. 15.
    Raffel DM, Chen W, Jung YW, Jang KS, Gu G, Cozzi NV (2013) Radiotracers for cardiac sympathetic innervation: transport kinetics and binding affinities for the human norepinephrine transporter. Nucl Med Biol 3:331–337CrossRefGoogle Scholar
  16. 16.
    Katritch Vsevolod, Cherezov Vadim, Stevens Raymond C (2013) Structure-function of the G-protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556CrossRefGoogle Scholar
  17. 17.
    Woodall MC, Ciccarelli M, Woodall BP, Koch WJ (2014) G protein–coupled receptor kinase 2: a link between myocardial contractile function and cardiac metabolism. Circ Res 10:1661–1670CrossRefGoogle Scholar
  18. 18.
    Mund RA, Frishman WH (2013) Brown adipose tissue thermogenesis: β3-adrenoreceptors as a potential target for the treatment of obesity in humans. Cardiol Rev 6:265CrossRefGoogle Scholar
  19. 19.
    Vasudevan NT, Mohan ML, Goswami SK, Naga Prasad SV (2011) Regulation of β-adrenergic receptor function: an emphasis on receptor resensitization. Cell Cycle 21:3684–3691CrossRefGoogle Scholar
  20. 20.
    Wills LP, Trager RE, Beeson GC, Lindsey CC, Peterson YK, Beeson CC, Schnellmann RG (2012) β2 adrenoceptor agonist formoterol stimulates mitochondrial biogenesis. J Pharmacol Exp Ther 342:106–118CrossRefGoogle Scholar
  21. 21.
    Bengel FM (2011) Imaging targets of the sympathetic nervous system of the heart: translational. J Nucl Med 52:1167–1170CrossRefGoogle Scholar
  22. 22.
    Higuchi T, Yousefi BH, Kaiser F, Gärtner F, Rischpler C, Reder S, Yu M, Robinson S, Schwaiger M, Nekolla SG (2013) Assessment of the 18F-labeled PET tracer LMI1195 for imaging norepinephrine handling in rat hearts. J Nucl Med 54(7):1142–1146CrossRefGoogle Scholar
  23. 23.
    He YL, Zhou WN, Wang XC, Bao BL, Zhang GJ, Wang C, Wang CM, Wang XM, Fang W (2014) The synthesis of a new cardiac sympathetic nerve imaging agent N-11C-CH3-dopamine and biodistribution study. J Radioanal Nucl Chem 301(2):469–474CrossRefGoogle Scholar
  24. 24.
    Philips SR, Davis BA, Durden DA, Boulton AA (1975) Identification and distribution of m-tyramine in the rat. Can J Biochem 1:65–69CrossRefGoogle Scholar
  25. 25.
    Philips SR, Durden DA, Boulton AA (1974) Identification and distribution of p-tyramine in the rat. Can J Biochem 5:366–373CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Yulin He
    • 1
    • 2
  • Xiaojun Zhang
    • 1
  • Jian Liu
    • 1
  • Jinming Zhang
    • 1
    Email author
  • Xuemei Wang
    • 2
  1. 1.Department of Nuclear MedicineChinese PLA General HospitalBeijingChina
  2. 2.Department of Nuclear MedicineThe Affiliated Hospital of Inner Mongolia Medical UniversityHohhotChina

Personalised recommendations