Advertisement

Sorption behavior of some radionuclides using prepared adsorbent of hydroxyapatite from biomass waste material

  • D. M. Imam
  • S. I. Moussa
  • M. F. AttallahEmail author
Article
  • 54 Downloads

Abstract

We aim to recycle and utilization of eggshell as a biomass waste of human foodstuff. Pure hydroxyapatite nano-particles were prepared using waste eggshell at different temperature of 80 °C (ESHANP) and calcination at the 850 °C (CESHA) adsorbent materials and characterized by some instruments. Sorption studies of 60Co and 109Cd from aqueous waste solutions onto ESHANP and CESHA were performed at different pH solutions, initial ion concentration and contact time. The obtained data were analyzed using some kinetic, diffusion and isotherm models. It can be recommended ESHANP as remediation agent for nuclear waste sites.

Keywords

Radioactive liquid waste Removal Utilization, biomass material, toxic heavy elements 

Notes

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no compete of interest.

Supplementary material

10967_2018_6403_MOESM1_ESM.docx (152 kb)
Supplementary material 1 (DOCX 152 kb)

References

  1. 1.
    Dewiere L, Bugai D, Grenier C, Kashparov V, Ahamdach N (2004) Sr-90 migration to the geo-sphere from a waste burial in the Chernobyl exclusion zone. J Environ Radioact 74(1–3):139–150.  https://doi.org/10.1016/j.jenvrad.2004.01.019 CrossRefGoogle Scholar
  2. 2.
    McKinley JP, Zachara JM, Smith SC, Liu C (2007) Cation exchange reactions controlling desorption of Sr-90 from coarse-grained contaminated sediments at the Hanford site, Washington. Geochim Cosmochim Acta 71(2):305–325.  https://doi.org/10.1016/j.gca.2006.09.027 CrossRefGoogle Scholar
  3. 3.
    Zhang S, Niu H, Guo Z, Chen Z, Wang H, Xu J (2011) Impact of environmental conditions on the sorption behavior of radio cobalt in TiO2/eggshell suspensions. J Radioanal Nucl Chem 289(2) 479–487. https://link.springer.com/article/10.1007/s10967-011-1088-9
  4. 4.
    Cecille L, Casarci M, Pietrelli L, New separation chemistry techniques for radioactive waste and other specific applications. Cambridge University Press, Cambridge (1991) https://www.springer.com/us/book/9789401136549
  5. 5.
    Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    Oelkers EH, Montel JM (2008) Phosphates and nuclear waste storage. Elements 4(2):113–116.  https://doi.org/10.2113/GSELEMENTS.4.2.113 CrossRefGoogle Scholar
  7. 7.
    Rakovan JF, Pasteris JDA (2015) Technological gem: materials, medical, and environmental mineralogy of apatite. Elements 11(3):195–200.  https://doi.org/10.2113/gselements.11.3.195 CrossRefGoogle Scholar
  8. 8.
    Handley-Sidhu S, Renshaw JC, Moriyama S, Stolpe B, Mennan C, Bagheriasl S, Yong P, Stamboulis A, Paterson-Beedle M, Sasaki K, Pattrick RAD, Lead JR, Macaskie LE (2011) Uptake of Sr2+ and Co2+ into biogenic hydroxyapatite: implications for biomineral ion exchange synthesis. Environ Sci Technol 45(16):6985–6990.  https://doi.org/10.1021/Es2015132 CrossRefGoogle Scholar
  9. 9.
    Moore RC, Sanchez C, Holt K, Zhao H, Xu HF, Choppinh GR (2004) Formation of hydroxyapatite in soil using calcium citrate and sodium phosphate for control of strontium migration. Radiochem Acta 92(9–11):719–723.  https://doi.org/10.1524/ract.92.9.719.55000 Google Scholar
  10. 10.
    Campayo L, Grandjean A, Coulon A, Delorme R, Vantelon D, Laurencin D (2011) Incorporation of iodates into hydroxyapatites a new approach for the confinement of radioactive iodine. J Mater Chem 21:17609–17911. http://pubs.rsc.org/en/content/articlelanding/2011/jm/c1jm14157k#!divAbstract
  11. 11.
    Coulon A, Laurencin D, Grandjean A, Coumes CCD, Rossognol S, Campayo L (2014) Immobilization of iodine into a hydroxyapatite structure prepared by cementation. J Mater Chem A 2:20923–20932.  https://doi.org/10.1039/c4ta03236e CrossRefGoogle Scholar
  12. 12.
    Wang DJ, Bradford SA, Paradelo M, Peijnenburg W, Zhou DM (2011) Facilitated transport of copper with hydroxyapatite nanoparticles in saturated sand. Soil Sci Soc Am J 76(2):375–388.  https://doi.org/10.2136/sssaj.2011.0203 CrossRefGoogle Scholar
  13. 13.
    Thomson BM, Smith CL, Busch RD, Siegel MD, Baldwine C (2003) Removal of metals and radionuclides using apatite and other natural sorbents. J Environ Eng 129(6):492–499.  https://doi.org/10.1061/(ASCE)0733-9372 CrossRefGoogle Scholar
  14. 14.
    Cui HB, Zhou J, Si YB, Mao JD, Zhao QG, Fang GD, Liang JN (2014) Immobilization of Cu and Cd in a contaminated soil: one- and four- year field effects. J Soil Sediments 14(8): 1397–1406. https://link.springer.com/article/10.1007%2Fs11368-014-0882-8
  15. 15.
    Li ZW, Zhou MM, Lin WD (2014) The research of nanoparticle and microparticle hydroxyapatite amendment in multiple heavy metals contaminated soil remediation. J Nano Mater.  https://doi.org/10.1155/2014/168418 Google Scholar
  16. 16.
    Smiciklas I (2010) Resource recovery of animal bones: study on sorptive properties and mechanism for Sr2+ ions. J Nucl Mater 400(1):15–24.  https://doi.org/10.1016/j.jnucmat.2010.02.004 CrossRefGoogle Scholar
  17. 17.
    Meski S, Ziani S, Khireddine H, Meski S, Ziani S, Khireddine H (2010) Removal of lead ions by hydroxyapatite prepared from the egg shell. J Chem Eng Data 55(9): 3923–3928. https://pubs.acs.org/doi/abs/10.1021/je901070e
  18. 18.
    Wu HS, Tsou H, Hsu S, Liou S, Ho W (2013) A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite. Ceram Int 39(7):8183–8188.  https://doi.org/10.1016/j.ceramint.2013.03.094 CrossRefGoogle Scholar
  19. 19.
    Rivera EM, Araiza M, Brostow W, Castaño VM, Dı́az-Estrada J, Hernández R (1999) Synthesis of hydroxyapatite from eggshells. Mater Lett 41: 128–134. https://lapom.unt.edu/publications/pdf%20articles/varudadditions/MatLett_v41no3pp128-134.pdf
  20. 20.
    Ibrahim AR, Wei W, Zhang D, Wang H, Li J (2013) Conversion of waste eggshells to mesoporous hydroxyapatite nanoparticles with high surface area. Mater Lett 110:195–197.  https://doi.org/10.1016/j.matlet.2013.08.014 CrossRefGoogle Scholar
  21. 21.
    Ahmed S, Ahsan M (2009) Synthesis of Ca-hydroxyapatite bioceramic from eggshell and its characterization. Bangladesh J Sci Ind Res 43:501–512.  https://doi.org/10.3329/bjsir.v43i4.2240 CrossRefGoogle Scholar
  22. 22.
    Bahrololoom ME, Javidi M, Javadpour S, Ma J (2009) Characterization of natural hydroxyapatite extracted from bovine cortical bone ash. J Ceram Process Res 10:129–138Google Scholar
  23. 23.
    Benhayoune H, Charlier D, Jallot E, Laquerriere P, Balossier G, Bonhomme P (2001) Evaluation of the Ca/P concentration ratio in hydroxyapatite by STEM-EDXS: influence of the electron irradiation dose and temperature processing. J Phys D Appl Phys 34 141–147. http://iopscience.iop.org/article/10.1088/0022-3727/34/1/321/pdf
  24. 24.
    Akram M, Ahmed R, Shakir I, Ibrahim WAW, Hussain R (2014) Extracting hydroxyapatite and its precursors from natural resources. J Mater Sci 49(4):1461–1475.  https://doi.org/10.1007/s10853-013-7864-x CrossRefGoogle Scholar
  25. 25.
    Kamalanathan P, Ramesh S, Bang LT, Niakan A, Tan CY, Purbolaksono J, Chandran H, Teng WD (2014) Synthesis and sintering of hydroxyapatite derived from eggshells as a calcium precursor. Ceram Int 40:16349–16359.  https://doi.org/10.1016/j.ceramint.2014.07.074 CrossRefGoogle Scholar
  26. 26.
    Charlena, Nuzulia NA, Handika (2017) Synthesis and characterization of composite hydroxyapatite-silver nanoparticles, IOP Conf. Series: Earth and Environmental Science 58: 012064. http://iopscience.iop.org/article/10.1088/1755-1315/58/1/012064/pdf
  27. 27.
    Berzina-Cimdina L, Borodajenko N, Research of calcium phosphates using Fourier transform infrared spectroscopy, Infrared Spectroscopy-Materials Science, Engineering and Technology, Rijeka, Croatia: InTech, (2012). 123–148.  https://doi.org/10.5772/36942
  28. 28.
    Gergely G, Wéber F, Lukács I, Illés L, Tóth AL, Horváth ZE, Mihály J, Balázsi C (2010) Nanohydroxyapatite preparation from biogenic raw materials. Central Eur J Chem 8(2):375–381.  https://doi.org/10.2478/s11532-010-0004-4 Google Scholar
  29. 29.
    Ghosh SK, Prakash A, Datta S, Roy SK, Basu D (2010) Effect of fuel characteristics on synthesis of calcium hydroxyapatite by solution combustion route. Bull Mater Sci 33(1) 7–16. https://www.ias.ac.in/article/fulltext/boms/033/01/0007-0016
  30. 30.
    Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res 62(4):600–612.  https://doi.org/10.1002/jbm.10280 CrossRefGoogle Scholar
  31. 31.
    Ratner B, Hofman A, Schoen F (2004) Biomaterials science: an introduction to materials in medicine. Academic Press, New YorkGoogle Scholar
  32. 32.
    Shahmohammadi M, Jahandideh R, Behnamghader A, Rangie M (2010) Sol-gel synthesis of FHA/CDHA nanoparticles with a nonstochiometric ratio. Int J Nano Dim 1(1):41–45.  https://doi.org/10.7508/IJND.2010.0X.004 Google Scholar
  33. 33.
    Thamaraiselvi TV, Prabakaran K, Rajeswari S (2006) Synthesis of hydroxyapatite that mimic bone minerology. Trends Biomater Artif Organs 19(2):81–83Google Scholar
  34. 34.
    Meejoo S, Maneeprakorn W, Winotai P (2006) Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating. Thermocim Acta 447(1):115–120.  https://doi.org/10.1016/j.tca.2006.04.013 CrossRefGoogle Scholar
  35. 35.
    Poinescu AA, Ion RM, van Staden RI, van Staden JF, Ghiurea M (2010) Investigations on hydroxyapatite powder obtained by wet precipitation. SPIE Proceeding, Advanced Topics in Optoelectronics, Microelectronics and Nanotechnologies 7821:78210.  https://doi.org/10.1117/12.882148 CrossRefGoogle Scholar
  36. 36.
    Lagergren S (1898) Zur theorie der sogenannten adsorption gelöster stoffe, Kungliga Svenska Vetenskapsakademiens, Handlingar, 24(4): 1–39Google Scholar
  37. 37.
    Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465.  https://doi.org/10.1016/S0032-9592(98)00112-5 CrossRefGoogle Scholar
  38. 38.
    Ho YS, McKay G (2002) Application of kinetic models to the sorption of copper(II) on to peat. Adsorp Sci Technol 20(8):797–815.  https://doi.org/10.1260/026361702321104282 CrossRefGoogle Scholar
  39. 39.
    Teng H, Hsieh CT (1999) Activation energy for oxygen chemisorption on carbon at low temperatures. Ind Eng Chem Res 38(1):292–297.  https://doi.org/10.1021/ie980107j CrossRefGoogle Scholar
  40. 40.
    Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanitary Eng Div Am Soc Civil Eng 89:31–60Google Scholar
  41. 41.
    Boyd GE, Adamson AW, Mayers LS (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. II. kinetics. J Am Chem Soc 69(11): 2836–2848. https://pubs.acs.org/doi/abs/10.1021/ja01203a066
  42. 42.
    Attallah MF, Allan KF, Mahmoud MR (2016) Synthesis of poly (Acrylic Acid-Maleic Acid)SiO2/Al2O3 as novel composite material for cesium removal from acidic solutions. J Radioanal Nucl Chem 307: 1231–1241. https://link.springer.com/article/10.1007%2Fs10967-015-4349-1
  43. 43.
    Borai EH, Attallah MF, Elgazzar AH, El-Tabl AS (2018) Isotherm and kinetic sorption of some lanthanides and iron from aqueous solution by aluminum silicotitante exchanger. Part Sci Technol  https://doi.org/10.1080/02726351.2017.1385550
  44. 44.
    El Afifi EM, Attallah MF, Borai EH (2016) Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste. J Environ Radioact 151(1):156–165.  https://doi.org/10.1016/j.jenvrad.2015.10.001 CrossRefGoogle Scholar
  45. 45.
    Rizk HE, Attallah MF, Ali AMI (2017) Investigations on sorption performance of some radionuclides, heavy metals and lanthanides using mesoporous adsorbent material. J Radioanal Nucl Chem 314:2475–2487.  https://doi.org/10.1007/s10967-017-5620-4 CrossRefGoogle Scholar
  46. 46.
    Attallah MF, Abd-Elhamid AI, Ahmed IM, Aly HF (2018) Possible use of synthesized nano silica functionalized by Prussian blue as sorbent for removal of certain radionuclides from liquid radioactive waste. J Mol Liq 261:379–386.  https://doi.org/10.1016/j.molliq.2018.04.050 CrossRefGoogle Scholar
  47. 47.
    Jiao J, Zhao J, Pei Y (2017) Adsorption of Co(II) from aqueous solutions by water treatment residuals. J Environ Sci 52:232–239.  https://doi.org/10.1016/j.jes.2016.04.012 CrossRefGoogle Scholar
  48. 48.
    Parab H, Joshi S, Shenoy N, Lali A, Sarma US, Sudersanan M (2006) Determination of kinetic and equilibrium of Co(II), Cr(III), and Ni(II) onto coir pith. Process Biochem 41(3):609–615.  https://doi.org/10.1016/j.procbio.2005.08.006 CrossRefGoogle Scholar
  49. 49.
    Shehata FA, Attallah MF, Borai EH, Hilal MA, Abo-Aly MM (2010) Sorption reaction mechanism of some hazardous radionuclides from mixed waste by impregnated crown ether onto polymeric resin. Appl Radiat Isot 68(2):239–249.  https://doi.org/10.1016/j.apradiso.2009.10.040 CrossRefGoogle Scholar
  50. 50.
    Moussa SI (2013) Synthesis and characterization of novel magnetic nano-materials and studying their potential application in recovery of metal ions Ph.D. Thesis, Faculty of Science, Ain Shams Uni., Cairo, Egypt (2013). http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/46/135/46135142.pdf
  51. 51.
    Silva-Yumia J, Escudey M, Gacitua M, Pizarro C (2018) Kinetics, adsorption and desorption of Cd(II) and Cu(II) on natural allophane: effect of iron oxide coating. Geoderma 319:70–79.  https://doi.org/10.1016/j.geoderma.2017.12.038 CrossRefGoogle Scholar
  52. 52.
    Smolyakov BS, Sagidullin AK, Bychkov AL, Lomovsky IO, Lomovsky OI (2015) Humic-modified natural and synthetic carbon adsorbents for the removal of Cd(II) from aqueous solutions. J Environ Chem Eng V 3(3):1939–1946.  https://doi.org/10.1016/j.jece.2015.07.005 CrossRefGoogle Scholar
  53. 53.
    Li W, Zhang S, Shan X (2007) Surface modification of goethite by phosphate for enhancement of Cu and Cd adsorption. Colloid Surf A Physicochem Eng Aspects 293(1–3):13–19.  https://doi.org/10.1016/j.colsurfa.2006.07.002 CrossRefGoogle Scholar
  54. 54.
    Min SH, Han JS, Shin EW, Park JK (2004) Improvement of cadmium ion removal by base treatment of Juniper fiber. Water Res 38(5):1289–1295.  https://doi.org/10.1016/j.watres.2003.11.016 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Hot Laboratories CenterEgyptian Atomic Energy AuthorityCairoEgypt

Personalised recommendations