Effect of electron radiation on electrical parameters of Zn/n-Si/Au–Sb and Zn/ZnO/n-Si/Au–Sb diodes

  • M. A. Salari
  • M. Sağlam
  • A. Baltakesmez
  • B. GüzeldirEmail author


In this study, RF-magnetron sputtered ZnO thin film as an interlayer was used to improve radiation tolerance of the Schottky diodes. The structural and optical measurements showed that the ZnO thin films have hexagonal crystal structure with preferential c-axis orientation, 20.39 nm grain sizes and 3.15 eV bandgap. The electrical parameters such as ideality factor, barrier height and series resistance of Zn/n-Si/Au–Sb and Zn/ZnO/n-Si/Au–Sb diodes were calculated before and after electron radiation at 25, 50 and 75 gray doses. Deviation values of the parameters showed that the ZnO as an interlayer caused to improved radiation tolerance of the diodes.


Zinc oxide Electron radiation Schottky diode Heterojunction Barrier height 



We thank to Yılmaz Şahin from Atatürk University for help in exposing electron irradiation measurements.


  1. 1.
    Umezawa H, Shikata S, Funaki T (2014) Diamond Schottky barrier diode for high-temperature, high-power, and fast switching applications. Jpn J Appl Phys 53:570–576Google Scholar
  2. 2.
    Güzeldir B, Sağlam M, Ateş A (2010) Analysis of the electrical characteristics of Zn/ZnSe/n-Si/Au–Sb structure fabricated using SILAR method as a function of temperature. J Alloys Compd 506:388–394CrossRefGoogle Scholar
  3. 3.
    Akay D, Efil E, Kaymak N, Orhan E, Ocak SB (2018) Study of frequency dependent characterization: applied gamma-ray irradiation on metal-polymer nanostructure. Radiat Phys Chem 318:1409–1417Google Scholar
  4. 4.
    Aydogan Ş, İncekara Ü, Türüt A (2011) The effects of 12 MeV electron irradiation on the electrical characteristics of the Au/Aniline blue/p-Si/Al device. Microelectron Reliab 51(12):1–7CrossRefGoogle Scholar
  5. 5.
    Uslu H, Yıldırım M, Altındal Ş, Durmuş P (2012) The effect of gamma irradiation on electrical and dielectric properties of organic-based Schottky barrier diodes (SBDs) at room temperature. Radiat Phys Chem 81:362–369CrossRefGoogle Scholar
  6. 6.
    Venkatesan S, Ngo E, Khatiwada D, Zhang C, Qiao Q (2015) Enhanced lifetime of polymer solar cells by surface passivation of metal oxide buffer layers. ACS Appl Mater Interfaces 7(29):16093–16100CrossRefGoogle Scholar
  7. 7.
    Dong H, Pang S, Zhang Y, Chen D, Zhu W, Xi H, Chang J, Zhang J, Zhang C, Hao Y (2018) Improving electron extraction ability and device stability of perovskite solar cells using a compatible PCBM/AZO electron transporting bilayer. Nanomaterials 720:1–10Google Scholar
  8. 8.
    Liu X, Liu C, Sun R, Liu K, Zhang Y, Wang HQ, Fang J, Yang C (2015) Improved device performance of polymer solar cells by using a thin light-harvesting-complex modified ZnO film as the cathode interlayer. ACS Appl Mater Interfaces 7(34):18904–18912CrossRefGoogle Scholar
  9. 9.
    Zhou J, He XL, Wang WB, Zhu Q, Xuan WP, Jin H, Dong SR, Wang DM, Luo JK (2013) Transparent surface acoustic wave devices on ZnO/glass using Al-doped ZnO as the electrode. IEEE Electron Device Lett 34:1319–1321CrossRefGoogle Scholar
  10. 10.
    Hsiao CC, Yu SY (2012) Improved response of ZnO films for pyroelectric devices. Sensors 12:17007–17022CrossRefGoogle Scholar
  11. 11.
    Sharma V, Kumar P, Kumar A, Surbhi Asokan K, Sachdev K (2017) High-performance radiation stable ZnO/Ag/ZnO multilayer transparent conductive electrode. Sol Energy Mater Sol Cells 169:122–131CrossRefGoogle Scholar
  12. 12.
    Baltakesmez A, Tekmen S, Tüzemen S (2011) ZnO homojunction white light-emitting diodes. J Appl Phys 110:1–7CrossRefGoogle Scholar
  13. 13.
    Firdous S (2018) Development and imaging of zinc oxide nanorods as a photosensitizer for the diagnosis and treatment of cancer using lasers. Laser Phys Lett 15:1–8Google Scholar
  14. 14.
    Davydova M, Laposa A, Smarhak J, Kromka A, Neykova N, Nahlik J, Kroutil J, Drahokoupil J, Voves J (2018) Gas-sensing behaviour of ZnO/diamond nanostructures. Beilstein J Nanotechnol 9:22–29CrossRefGoogle Scholar
  15. 15.
    Baltakesmez A, Biber M, Tüzemen S (2018) Inverted planar perovskite solar cells based on Al doped ZnO substrate. J Radiat Res Appl Sci 112:124–129CrossRefGoogle Scholar
  16. 16.
    Alshammari FH, Nayak PK, Wang Z, Alshareef HN (2016) Enhanced ZnO thin-film transistor performance using bilayer gate dielectrics. ACS Appl Mater Interfaces 8(35):22751–22755CrossRefGoogle Scholar
  17. 17.
    Maji TK, Bagchi D, Kar P, Karmakar D, Pal SK (2017) Enhanced charge separation through modulation of defect-state in wide band-gap semiconductor for potential photocatalysis application: ultrafast spectroscopy and computational studies. J Photochem Photobiol A 332:391–398CrossRefGoogle Scholar
  18. 18.
    Su YQ, Zhu Y, Yong D, Chen M, Su L, Chen A, Wu Y, Pan B, Tang Z (2016) Enhanced exciton binding energy of ZnO by long-distance perturbation of doped be atoms. J Phys Chem Lett 7:1484–1489CrossRefGoogle Scholar
  19. 19.
    Dai S, Dunn ML, Park HS (2010) Piezoelectric constants for ZnO calculated using classical polarizable core-shell potentials. Nanotechnology 21:44507–44515Google Scholar
  20. 20.
    Raji R, Gopchandran KG (2017) ZnO nanostructures with tunable visible luminescence: effects of kinetics of chemical reduction and annealing. J Sci Adv Mater Dev 2:51–58Google Scholar
  21. 21.
    Viespe C, Miu D (2017) Surface acoustic wave sensor with Pd/ZnO bilayer structure for room temperature hydrogen detection. Sensors 17:1–9CrossRefGoogle Scholar
  22. 22.
    Tang C, Jiang C, Lu W, Song J (2013) Nonlinear length dependent electrical resistance of a single crystal zinc oxide micro/nanobelt. Phys Chem Chem Phys 21:1–6Google Scholar
  23. 23.
    Zhang KX, Yao CB, Wen X, Li QH, Sun WJ (2018) Ultrafast nonlinear optical properties and carrier dynamics of silver nanoparticle-decorated ZnO nanowires. RSC Adv 8:26133–26143CrossRefGoogle Scholar
  24. 24.
    Wu X, Lee J, Varshney V, Wohlwend JL, Roy AK, Luo T (2016) Thermal conductivity of wurtzite zinc-oxide from first-principles lattice dynamics a comparative study with gallium nitride. Sci Rep 22504:1–10Google Scholar
  25. 25.
    Sahal M, Mari B, Mollar M, Manjon FJ (2010) Zn1-xMgxO thin films deposited by spray pyrolysis. Phys Status Solidi C 79:2306–2310CrossRefGoogle Scholar
  26. 26.
    Farzana R, Rajarao R, Behera PR, Hassan K, Sahajwalla V (2018) Zinc oxide nanoparticles from waste Zn-C battery via thermal route: characterization and properties. Nanomaterials 717:1–12Google Scholar
  27. 27.
    Zhao X, Chen L, HeY Liu J, Peng W, Huang Z, Qi X, PanZ Zhang W, Zhang Z, Ouyang X (2016) Nanosecond X-ray detector based on high resistivity ZnO single crystal semiconductor. Appl Phys Lett 108:1–4Google Scholar
  28. 28.
    Koike K, Aoki T, Fujimoto R, Sasa S, Yano M, Gonda S, Ishigami R, Kume K (2012) Radiation hardness of single-crystalline zinc oxide films. Phys Stat Solidi 7:1577–1579Google Scholar
  29. 29.
    Samarin SN, Saramad S (2018) Simulation the spatial resolution of an X-ray imager based on zinc oxide nanowires in anodic aluminium oxide membrane by using MCNP and OPTICS Codes. J Instrum 13(05):1–12CrossRefGoogle Scholar
  30. 30.
    Vincke H, Theis C, Roesler S (2011) Induced radioactivity in and around high-energy particle accelerators. Radiat Prot Dosim 146:434–439CrossRefGoogle Scholar
  31. 31.
    Lv J, Li C, Liu Y (2016) Oxygen-deficient defects facilitate H radiation resistance in ZnO. Phys Stat Solidi B 254:1–5Google Scholar
  32. 32.
    Angub MCM, Vergara CJT, Husay HAF, Salvador AA, Empizo MJF, Kawano K, Minami Y, Shimizu T, Sarukura N, Somintac AS (2018) Hydrothermal growth of vertically aligned ZnO nanorods as potential scintillator materials for radiation detectors. J Lumin 203:427–435CrossRefGoogle Scholar
  33. 33.
    Sahare PD, Kumar S, Singh F (2018) n-ZnO/p-Si heterojunction nanodiodes based sensor for monitoring UV radiation. Sens Actuators A 279:351–360CrossRefGoogle Scholar
  34. 34.
    Narita S, Endo H, Chiba T, Sakemi Y, Itoh M, Yoshida H (2014) Characteristics of ZnO Schottky photodiode and effects of high-energy proton irradiation. Phys Stat Solidi A 211:570–573CrossRefGoogle Scholar
  35. 35.
    Su BY, Su YK, Tseng ZL, Shih MF, Cheng CY, Wu TH, Wu CS, Yeh JJ, Ho PY, Juang YD, Chu SY (2011) Antireflective and radiation resistant ZnO thin films for the efficiency enhancement of GaAs photovoltaics. J Electrochem Soc 158:267–270CrossRefGoogle Scholar
  36. 36.
    Deshpande VP, Sartale SD, Vyas AN, Ubale AU (2017) Temperature dependent properties of spray deposited nanostructured ZnO thin films. Int J Mater Chem 7(2):36–46Google Scholar
  37. 37.
    Bachari EM, Baud G, Ben AS, Jacquet M (1999) Structural and optical properties of sputtered ZnO films. Thin Solid Films 348(1):165–172CrossRefGoogle Scholar
  38. 38.
    Rhoderick EH, Williams RH (1988) Metal-semiconductor contacts, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  39. 39.
    Sze SM (1981) Physics of semiconductor devices. Wiley Press, New YorkGoogle Scholar
  40. 40.
    Krishnan S, Sanjeev G, Pattabi M (2008) Electron irradiation effects on the Schottky diode characteristics of p-Si. B: Beam Interact Mater Atoms 266(4):621–624Google Scholar
  41. 41.
    Karataş Ş, Türüt A (2006) Electrical properties of Sn/p-Si (MS) Schottky barrier diodes to be exposed to 60 Co γ-ray source. Nucl Instrum Methods Phys Res Sect A 566:584–589CrossRefGoogle Scholar
  42. 42.
    Singh R, Arora SK, Kanjilal D (2001) Swift heavy ion irradiation induced modification of electrical characteristics of Au/n-Si Schottky barrier diode. Mater Sci Semicond Process 4(5):425–432CrossRefGoogle Scholar
  43. 43.
    Norde H (1979) A modified forward I-V plot for Schottky diodes with high series resistance. J Appl Phys 50:5052–5055CrossRefGoogle Scholar
  44. 44.
    Karadeniz S (2007) 60 Co γ-ray irradiation effects on dielectric characteristics of tin oxide films of different thicknesses on n-type Si (1 1 1) substrates. Nucl Instrum Methods Phys Res Sect B 260:571–578CrossRefGoogle Scholar
  45. 45.
    Akay D, Karadeniz S, Birkan A, Ocak SB (2018) Effect of gamma-ray irradiation on the electrical characteristics of Al/C24H12/p-Si nano-structure. Phys Scr 93:1–5CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • M. A. Salari
    • 1
  • M. Sağlam
    • 1
  • A. Baltakesmez
    • 2
  • B. Güzeldir
    • 1
    Email author
  1. 1.Department of Physics, Faculty of SciencesUniversity of AtatürkErzurumTurkey
  2. 2.Department of Electricity and Energy, Technical Scientific Vocational SchoolArdahan UniversityArdahanTurkey

Personalised recommendations